Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northern lights glimmer with unexpected trait

24.04.2008
An international team of scientists has detected that some of the glow of Earth's aurora is polarized, an unexpected state for such emissions.

Measurements of this newfound polarization in the Northern Lights may provide scientists with fresh insights into the composition of Earth's upper atmosphere, the configuration of its magnetic field, and the energies of particles from the Sun, the researchers say.

If observed on other planets, the phenomenon might also give clues to the shape of the Sun's magnetic field as it curls around other bodies in the solar system.

When a beam of light is polarized, its electromagnetic waves share a common orientation, say, aligned vertically, or at some other angle. Until now, scientists thought that light from energized atoms and molecules in planetary upper atmospheres could not be polarized. The reason is simple: In spite of the low number of particles at the altitudes concerned (above 100 kilometers (60 miles)), there are still numerous collisions between molecules and gas atoms. Those collisions depolarize the emitted light.

Fifty years ago, an Australian researcher, Robert Duncan, claimed to observe what looked like polarization of auroral light, but other scientists found that single observation unconvincing.

To revisit the question, Jean Lilensten of the Laboratory of Planetology of Grenoble, France, and his colleagues studied auroral light with a custom-made telescope during the winters of 2006-2007 and 2007-2008. They made their observations from Svalbard Island, Norway, which is in the polar region, at a latitude of 79 degrees north.

At the north and south magnetic poles, many charged particles in the solar wind--a flow of electrically charged matter from the Sun--are captured by the planet's field and forced to plunge into the atmosphere. The particles strike atmospheric gases, causing light emissions.

Lilensten and his colleagues observed weak polarization of a red glow that radiates at an altitude of 220 kilometers (140 miles). The glow results from electrons hitting oxygen atoms. The scientists had suspected that such light might be polarized because Earth's magnetic field at high latitudes funnels the electrons, aligning the angles at which they penetrate the atmosphere.

The finding of auroral polarization "opens a new field in planetology," says Lilensten, who is the lead author of the study. He and his colleagues reported their results on 19 April in Geophysical Research Letters, a publication of the American Geophysical Union (AGU).

Fluctuations in the polarization measurements can reveal the energy of the particles coming from the Sun when they enter Earth's atmosphere, Lilensten notes. The intensity of the polarization gives clues to the composition of the upper atmosphere, particularly with regard to atomic oxygen.

Because polarization is strongest when the telescope points perpendicularly to the magnetic field lines, the measurements also provide a way to determine magnetic field configurations, Lilensten adds. That could prove especially useful as astronomers train their telescopes on other planetary atmospheres. If polarized emissions are observed there as well, the measurements may enable scientists to understand how the Sun's magnetic field is distorted by obstacles such as the planets Venus and Mars, which lack intrinsic magnetic fields.

Title:
"Polarization in aurorae: A new dimension for space environments studies"
Authors:
Jean Lilensten, Mathieu Barthelemy, Roland Thissen, Cyril Simon, Odile Dutuit:
CNRS-UJF, Laboratoire de Planetologie de Grenoble, Batiment D de physique, Grenoble, France; Cyril Simon is also at ESTEC, Noordwijk, Netherlands;

Joran Moen: Department of Physics, University of Oslo, Blindern, Oslo, Norway, and ESTEC, Noordwijk, Netherlands;

Dag A. Lorentzen, Fred Sigernes: Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Svalbard, Norway;

Pierre Olivier Amblard: CNRS-INPG, GIPSA Lab, BP 46, Saint Martin d'Heres, France.

Citation:
Lilensten, J., J. Moen, M. Barthelemy, R. Thissen, C. Simon, D. A. Lorentzen, O.

Dutuit, P. O. Amblard, and F. Sigernes (2008), Polarization in aurorae: A new dimension for space environments studies, Geophys. Res. Lett., 35, L08804, doi:10.1029/2007GL033006.

Contact information for coauthors:
Jean Lilensten: office: +33 (0) 4 76 51 41 49, email: jean.lilensten@obs.ujf- grenoble.fr

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://www.obs.ujf-grenoble.fr

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>