Arctic ice more vulnerable to sunny weather

“The relative importance of solar radiation in the summer is changing,” says Jennifer Kay of the National Center for Atmospheric Research (NCAR) in Boulder, Colo., who is lead author of the study. “The amount of sunshine reaching the Arctic is increasingly influential, as there is less ice to reflect it back into space,” she says.

The findings by Kay and colleagues at NCAR and Colorado State University
(CSU) in Fort Collins indicate that the presence or absence of clouds now has greater implications for sea ice loss.

“A single unusually clear summer can now have a dramatic impact,” Kay says.

A report on the new results will be published tomorrow 22 April 2008 in Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

Last summer's loss of Arctic sea ice set a modern-day record, with the ice extent shrinking in September to a minimum of about 4.1 million square kilometers (1.6 million square miles). That was 43 percent less ice coverage than in 1979, when accurate satellite observations began.

The soon-to-be-published study draws on observations from new NASA satellite radar and lidar instruments. Lidar devices make measurements using lasers.

Looking at the first two years of satellite data from those sensors, Kay and her colleagues found that total 2007 summertime cloud cover was 16 percent less than the year before, largely because of a strong high-pressure system centered north of Alaska that kept skies clear.

Over a three-month period in the summer, the increased sunshine was strong enough to melt about a foot of surface ice. Over open water, it was sufficient to increase sea-surface temperatures by 2.4 degrees Celsius (4.3 degrees Fahrenheit).

Warmer ocean waters can contribute to sea ice loss by melting the ice from the bottom, thereby thinning it and making it more susceptible to future melt.

“Satellite radar and lidar measurements allow us to observe Arctic clouds in a new way,” says CSU's Tristan L'Ecuyer, a co-author of the study. “These new instruments not only provide a very precise view of where clouds exist but also tell us their height and thickness, which are key properties that determine the amount of sunlight clouds reflect back to space.”

The research team also examined longer-term records of Arctic cloud and weather patterns, including a 62-year-long record of cloudiness from surface observations at Barrow, Alaska. The scientists found that the 2007 weather and cloud pattern was unusual but not unprecedented. Five other years–1968, 1971, 1976, 1977, and 1991–appeared to have lower summertime cloud cover than 2007, but without the same impact on sea ice.

“In a warmer world, the thinner sea ice is becoming increasingly sensitive to year- to-year variations in weather and cloud patterns,” Kay says.

The research suggests that warmth from the sun will increasingly affect Arctic climate in the summer. As the ice shrinks, incoming sunshine triggers a feedback

mechanism: the newly exposed dark ocean waters, much darker than the ice, absorb the sun's radiation instead of reflecting it. This warms the water and melts more ice, which in turn leads to more absorption of radiation and still more warming.

The authors note that, in addition to solar radiation, other factors such as changes in wind patterns and, possibly, shifts in ocean circulation patterns also influence sea ice loss. In particular, strong winds along regions of sea ice retreat were important to last year's loss of ice. The relative importance of these factors, and the precise extent to which global climate change is driving them, are not yet known.

This study was funded by NASA and by the National Science Foundation.

Title:
“The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum.”
Authors:
Jennifer Kay and Andrew Gettelman: Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado, USA.; Kay is also with Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado, USA.;

Tristan L'Ecuyer, Graeme Stephens, and Chris O'Dell: Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado, USA.

Citation:
Kay, J. E., T. L'Ecuyer, A. Gettelman, G. Stephens,and C. O'Dell (2008), The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum, Geophys.Res. Lett., 35, L08503, doi:10.1029/2008GL033451.
Contact information for coauthors:
Jennifer Kay, NCAR Scientist (also affiliated with CSU), +1-303-497-1730, jenkay@ucar.edu

Media Contact

Peter Weiss American Geophysical Union

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors