Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Underwater landslides: 100 km/h

31.03.2008
Deposit landslides move much faster in water than in air. Even in places where the sea bed is as flat as a pancake, the underwater landslides can accumulate a speed of over 100 kilometres an hour.

Tekst: Yngve Vogt, Translated by: Kathrine Torday Gulden

Surprisingly sand and clay landslides can move at a much higher speed under water than above. Landslides can cross ocean floors with a tremendous speed and move several hundred kilometres in more than a hundred kilometres per hour.

"The speed of the landslides can be compared to the airport express in Oslo and the landslides “float” almost without any contact with the sea bed", says Professor Anders Elverhøi from the Department of Geosciences at the University of Oslo to the research magazine Apollon.

He has spent the last ten years studying underwater landslides.

His interest in underwater landslides began already at the end of the eighties, when the oil industry needed knowledge in regard to where they could place installations on the sea bed without there being a risk of them being ruined by landslides.

Ancient landslides

The oil industry has the last years begun the search for oil in the continental slope which ties together the continental shelf and the deep sea. Huge landslides have been observed in this area.

One example of this is the gas field at Ormen Lange, where the Storegga Landslide occurred approximately 8200 years ago. The landslide resulted in a 10-15 metre tidal wave which lead to the ruin of a Stone Age settlement on the west coast of Norway.

After the Ice Age a similar landslide occurred just outside Bjørnøya. The landslide moved 100 to 200 kilometres across the sea bed, even though the angle of inclination was only between a half and one degree steep, this being no steeper than Denmark.

Landslides in modern times

The most notorious landslide in modern time occurred outside Newfoundland in Canada in 1929. Cables on the sea bed were demolished. When researchers studied the damages they were able to establish that the landslide of one thousand cubic kilometres had moved at a speed of 60 to 100 kilometres an hour.

A thousand cubic kilometres is such a large amount that it could have covered Norway with more than three metres of deposit. The large landslides outside the coast of Norway were even bigger.

Paradoxes

Underwater landslides are paradoxical in two ways.

"One paradox is how such huge amounts of deposit can move at such great speed. The other paradox is that the landslides travel across great distances even if the angle of inclination is slight", says Anders Elverhøi.

To be able to reveal the secrets concerning underwater landslides, Elverhøi and Dr. Carl Harbitz at the International Centre for Geohazards have worked together with American researchers at a laboratory in St. Anthony Falls in USA. The researchers have imitated a landslide in a small tank with a six degree angle of inclination. Advanced high speed cameras have documented the experiment by taking 250 video images per second.

The fundamental physical nature of the landslide has been researched, more specifically how the particles distribute and have an impact on each other.

The results of this experiment have been used to create a mathematical model of large landslides at sea.

Hydroplaning

Deposit landslides travel further in water than in air.

On one of the videos the landslide is similar to a train with its nose pointing upwards. The speed is as intense the entire time.

Due to the pressure which commences in front of the landslide, the landslide points upwards and moves above a thin layer of water, hardly in contact with the sea bed. The phenomenon is called hydroplaning and causes less resistance. This is especially apparent in regard to landslides with a high content of marine clay, such was the case in the notorious Storegga Landslide outside the west coast of Norway.

Stretches into two

Thanks to the experiments at the American laboratory, Anders Elverhøi has calculated that the front part of the Storegga Landslide travelled at three to four times the speed than the behind part.

- When a landslide stretches, the mass is distributed over long distances. This can be compared to a dispersing car queue. The cars in front race forward, while the queue still clutters together behind.

During the stretch, water is mixed into the landslide. This causes less “resistance within” the landslide which results in the landslide moving at a higher speed.

– The combination of hydroplaning up front, that the landslide stretches and that water mixes in to the landslide, has to do with the speed and distance the landslide travels. This also results in the underwater landslide meeting a smaller collected resistance than a landslide would in air. We had not foreseen these results.

In certain cases there is such a large stretch in the landslide that the front of the landslide escapes the back end of the landslide. In these cases the landslide is divided into two.

”X-ray vision"

As of today pictures are only taken of the landslide’s surface.

– We are not sure that the surface of the landslide represents what is actually happening inside the landslide. To be certain of this we feel it is necessary to do research on the particle movement within the landslide.

This is the next step for their research project.

"We can learn more about safety in regard to underwater installations once we understand which mechanisms lead sand and clay to deep water. This understanding is also important to learn what sort of connection there is between landslides and tsunamis and what creates the basis for the oil reservoirs on the continental slope. This isn’t only interesting for Norway, but also for oil searches in other deep sea areas, such as on the outskirts of Nigeria, Angola and Brasil", Anders Elverhøi says.

Anders Elverhøi | alfa
Further information:
http://www.apollon.uio.no/vis/art/2008_1/Artikler/skred_english

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>