Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modern physics is critical to global warming research

13.03.2008
Science has come a long way with predicting climate. Increasingly sophisticated models and instruments can zero in on a specific storm formation or make detailed weather forecasts – all useful to our daily lives.

But to understand global climate change, scientists need more than just a one-day forecast. They need a deeper understanding of the complex and interrelated forces that shape climate.

This is where modern physics can help, argues Brad Marston, professor of physics at Brown University. Marston is working on sets of equations that can be used to more accurately explain climate patterns. Marston will explain his research as part of a panel discussion titled “The Physics of Climate and Climate Change,” scheduled for 2:30 p.m. on March 11, 2008, at the American Physical Society’s meeting in New Orleans. Marston will also take part in a 1 p.m. press conference prior to the presentation.

“Climate is a statement about the statistics of weather, not the day-to-day or minute-by-minute fluctuations,” Marston said. “That’s really the driving concept. We know we can’t predict the weather more than a couple of weeks out. But we can turn that to our advantage, by using statistical physics to look directly at the climate itself.”

Take the drying of Lake Mead in the western United States. Scientists think the lake, which straddles Nevada and Arizona, may already be getting less rain due to shifting weather patterns caused by a warming world. Computer models can follow those rainfall patterns and forecast the likely effects on the lake. But current models obscure the larger mechanisms – such as shifting storm tracks – that can drive changes in rainfall.

“If we’re just mesmerized by the details of the model,” Marston said, “we could be missing the big picture of why it’s happening.”

Marston’s statistical approach can be used to help crack the code of complicated, dynamic atmospheric processes poorly understood through models, such as convection, cloud formation, and macroturbulence, which refers to the currents, swirls and eddies in the global atmosphere. More fundamentally, Marston said this approach can help to deepen understanding of what is happening in today’s climate and what those changes can mean for climate in the future.

“We’re trying to make the models more robust, to give better insights into what is actually going on,” he said.

Marston’s research, on which he teamed with former Brown undergraduate Emily Conover and Tapio Schneider of the California Institute of Technology, was selected last fall for publication in the Journal of the Atmospheric Sciences. Marston’s ultimate research goal is to create a more realistic rendering of the global atmospheric system that can be used to understand the atmosphere of the past and to gauge future changes.

“We’re improving the statistical methods themselves, so that they’re more accurate,” Marston said. “At the same time we are applying the methods to progressively more complete models of the Earth’s atmosphere.”

Richard Lewis | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht Shrinking of Greenland's glaciers began accelerating in 2000, research finds
12.12.2019 | Ohio State University

nachricht One-third of recent global methane increase comes from tropical Africa
11.12.2019 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>