Scientists identify origin of hiss in upper atmosphere

The source of these low-frequency radio waves, which are known as plasmaspheric hiss, turns out to be not lightning or instabilities from a plasma, as previously proposed, but an intense electromagnetic wave type called “chorus,” which energizes electrons and was initially thought to be unrelated to hiss, said Jacob Bortnik, a researcher with the UCLA Department of Atmospheric and Oceanic Sciences.

The findings appear March 6 in the journal Nature.

“That chorus waves are the dominant source of plasmaspheric hiss was a complete surprise,” said Bortnik, whose research was federally funded by the National Science Foundation.

“Numerous theories to explain the origin of hiss have been proposed over the past four decades, but none have been able to account fully for its observed properties,” Bortnik said. “Here, we show that a different wave type, called chorus, can propagate into the plasmasphere from tens of thousands of kilometers away and evolve into hiss. Our new model naturally accounts for the observed frequency band of hiss, its incoherent nature, its day-night asymmetry in intensity, its association with solar activity and its spatial distribution.

“The connection between chorus and hiss is very interesting because chorus is instrumental in the formation of high-energy electrons outside the plasmasphere, while hiss depletes these electrons at lower equatorial altitudes,” he said.

Beginning in the late 1960s, spacecraft observations of wideband electromagnetic noise at frequencies below a few kilohertz established the presence of a steady, incoherent noise band in the frequency range between 200 Hz and 1 kHz. This emission was dubbed plasmaspheric hiss because of its unstructured nature, its spectral resemblance to audible hiss and its confinement to the plasmasphere, a dense plasma region around the Earth.

Bortnik was initially studying chorus, not hiss, when he made the discovery — one of many examples of serendipity in science.

Hiss tends to be confined inside of the plasmasphere, and chorus outside of it. Bortnik was modeling chorus because he knew it was important in creating high-energy electrons in space. While chorus occurs outside the plasmasphere, it leaks inside of it.

A better understanding of plasmaspheric hiss will help scientists to more accurately model the behavior of the high-energy electrons in the Van Allen radiation belts and thus improve their forecasts of space conditions, Bortnik said.

Media Contact

Stuart Wolpert EurekAlert!

More Information:

http://www.ucla.edu

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors