Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify origin of hiss in upper atmosphere

07.03.2008
Scientists have solved a 40-year-old puzzle by identifying the origin of the intense radio waves in the Earth's upper atmosphere that control the dynamics of the Van Allen radiation belts — belts consisting of high-energy electrons that can damage satellites and spacecraft and pose a risk to astronauts performing activities outside their spacecraft.

The source of these low-frequency radio waves, which are known as plasmaspheric hiss, turns out to be not lightning or instabilities from a plasma, as previously proposed, but an intense electromagnetic wave type called "chorus," which energizes electrons and was initially thought to be unrelated to hiss, said Jacob Bortnik, a researcher with the UCLA Department of Atmospheric and Oceanic Sciences.

The findings appear March 6 in the journal Nature.

"That chorus waves are the dominant source of plasmaspheric hiss was a complete surprise," said Bortnik, whose research was federally funded by the National Science Foundation.

"Numerous theories to explain the origin of hiss have been proposed over the past four decades, but none have been able to account fully for its observed properties," Bortnik said. "Here, we show that a different wave type, called chorus, can propagate into the plasmasphere from tens of thousands of kilometers away and evolve into hiss. Our new model naturally accounts for the observed frequency band of hiss, its incoherent nature, its day-night asymmetry in intensity, its association with solar activity and its spatial distribution.

"The connection between chorus and hiss is very interesting because chorus is instrumental in the formation of high-energy electrons outside the plasmasphere, while hiss depletes these electrons at lower equatorial altitudes," he said.

Beginning in the late 1960s, spacecraft observations of wideband electromagnetic noise at frequencies below a few kilohertz established the presence of a steady, incoherent noise band in the frequency range between 200 Hz and 1 kHz. This emission was dubbed plasmaspheric hiss because of its unstructured nature, its spectral resemblance to audible hiss and its confinement to the plasmasphere, a dense plasma region around the Earth.

Bortnik was initially studying chorus, not hiss, when he made the discovery — one of many examples of serendipity in science.

Hiss tends to be confined inside of the plasmasphere, and chorus outside of it. Bortnik was modeling chorus because he knew it was important in creating high-energy electrons in space. While chorus occurs outside the plasmasphere, it leaks inside of it.

A better understanding of plasmaspheric hiss will help scientists to more accurately model the behavior of the high-energy electrons in the Van Allen radiation belts and thus improve their forecasts of space conditions, Bortnik said.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>