Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key component of Earth's crust formed from moving molten rock

07.03.2008
Earth scientists are in the business of backing into history -- extrapolating what happened millions of years ago based on what they can observe now. Using this method, a team of Cornell researchers has created a mathematical computer model of the formation of granulite, a fine-grained metamorphic rock, in the Earth's crust.

By studying what were once pockets of hot, melted rock 13 kilometers (about 8 miles) deep in the Earth's crust 55 million years ago and calculating the period of cooling, the scientists were able to explain how granulite is formed as the molten rock migrates up through the crust.

The research is published in the March issue of the journal Nature by Gabriela V. Depine, a fourth-year graduate student in earth and atmospheric sciences (EAS); Christopher L. Andronicos, an EAS associate professor; and Jason Phipps-Morgan, professor of EAS. The research is funded by Cornell and by the National Science Foundation's Continental Dynamics program.

Granulite, composed mainly of feldspars, has no residual water and is called metamorphic because it is formed in temperatures of greater than 800 degrees Celsius (1,472 degrees Fahrenheit). It is a major component of the continental crust.

Working in British Columbia in summer 2006, the researchers puzzled over the formation of granulite, which, unlike other rocks, forms under a wide range of depths but under a narrow range of temperatures. In many places on Earth, temperature is assumed to vary linearly with depth -- that is, the deeper the crust, the hotter the rock.

The researchers decided to mathematically recreate the formation of granulite at various depths, to see if they could come up a method that mirrors the natural formation of the rock.

They did so by looking at plutons, or pockets of hot, melted rock that were once as much as 13 kilometers below the Earth's surface but are now exposed. (Plutons that rise to the surface and erupt can become volcanoes.) The researchers found that as melted rock deep in the Earth becomes buoyant and migrates up through the crust, granulite can form at various depths but at similar temperatures.

Looking at the melting process is like looking at the process of the formation of continents, Andronicos explained.

"If you look over geologic time, not all the rocks are the same age, and the reason for that is they got formed at different times," he said. "So if you can get a handle on the temperature, which is what controls melting and metamorphism, then you have a better idea of some of the fundamental controls that lead to rock formation, and therefore continents."

The computer model, he said, will hopefully provide further insight into the energy balance of the Earth during crustal formation.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>