Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenland ice sheet flows faster during summer melting

07.06.2002


New measurements show that the flow of ice in the Greenland ice sheet has been accelerating since 1996 during the summer melt season. The results suggest that the ice sheet may be responding more quickly to the warming climate than previously thought.



In an article published in Science magazine’s online Sciencexpress June 7, Jay Zwally, an ICESat Project scientist at the NASA Goddard Space Flight Center, Greenbelt, Md., Waleed Abdalati, a Polar Program scientist at NASA Headquarters, Washington, and colleagues report that increases in ice velocity during the summer are correlated with the timing and the intensity of ice sheet surface melting.

Using periodic Global Positioning Satellite measurements from 1996 through 1999, the researchers discovered that the ice flow speeds up from 31.3 cm (12.3 inches) per day in winter to a peak of 40 cm (15.7 inches) per day in the summer when surface melting is largest. "This study demonstrates that surface meltwater travels quickly through the 1200 meter (approx. 3/4 mile) thick ice to the bedrock to make the ice slide faster. This process was known for decades to enhance the flow of small mountain glaciers, but was not known to occur in the large ice sheets," Zwally said.


The meltwater makes its way from the surface to the bedrock by draining into crevasses and large tunnels called moulins that may be as large as 10 meters (approx. 33 feet) in diameter. More meltwater underneath the ice sheet provides lubrication to allow the ice sheet to move faster toward the coastline of Greenland.

Over time, as ice melts from the top of the ice sheet, the ice thins and spreads out toward lower elevations closer to the coast. The meltwater also carries heat (in the form of water) from the top of the ice to the base of the ice that sits on the bedrock.

A separate study by Abdalati and Konrad Steffen of the University of Colorado showed that the melting of the ice sheet surface has increased by nearly 20% over the last 21 years, while summer temperatures in that same period have increased by one quarter of a degree Celsius (.45º Fahrenheit). The link between ice sheet melt and ice flow suggest that the increasing melt may be more significant than previously believed.

The faster ice flow, ice thinning and consequent lowering of the surface elevation of the ice sheet can open a feedback to more melting that has not been considered in computer models that predict ice sheet response to climate change.

NASA’s ICESat mission, which is planned for launch in December of this year, will use a laser altimeter to monitor ice sheet elevations and show elevation changes as small as 1 cm/yr. ICESat’s measurements will tell us whether the ice sheets are growing or shrinking overall, how much they are contributing to sea level change, and will help predict future changes in ice volume and sea level.

Zwally and his colleagues speculate that increased movement of the ice sheet due to more meltwater underneath the ice sheet may have contributed to the demise of the Laurentide ice sheet approximately 10,000 years ago. During that time, the Earth’s axis of rotation was more tilted toward the Sun causing warmer summers in the Northern Hemisphere.

Further, they suggest that the observed process may also have contributed to the extensive melting of the Greenland Ice Sheet during the last Interglacial period, some 125,000 years ago. According to the U.S. Geological Survey, previous studies have shown that during the last Interglacial period, carbon dioxide (CO2) concentrations in the atmosphere were relatively high, temperatures may have been higher than the present, and sea level may have been approximately 6 meters (19.5 feet) higher.

"During this time when the climate was warmer, the ice sheet was less extensive. With the predicted greenhouse warming we may be returning to similar conditions," Zwally said.


This research was funded under NASA’s ICESat Project.

Rob Gutro | EurekAlert
Further information:
http://www.gsfc.nasa.gov/topstory/20020606greenland.html
http://icesat.gsfc.nasa.gov
http://www.Sciencexpress.org/

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>