Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenland ice sheet flows faster during summer melting

07.06.2002


New measurements show that the flow of ice in the Greenland ice sheet has been accelerating since 1996 during the summer melt season. The results suggest that the ice sheet may be responding more quickly to the warming climate than previously thought.



In an article published in Science magazine’s online Sciencexpress June 7, Jay Zwally, an ICESat Project scientist at the NASA Goddard Space Flight Center, Greenbelt, Md., Waleed Abdalati, a Polar Program scientist at NASA Headquarters, Washington, and colleagues report that increases in ice velocity during the summer are correlated with the timing and the intensity of ice sheet surface melting.

Using periodic Global Positioning Satellite measurements from 1996 through 1999, the researchers discovered that the ice flow speeds up from 31.3 cm (12.3 inches) per day in winter to a peak of 40 cm (15.7 inches) per day in the summer when surface melting is largest. "This study demonstrates that surface meltwater travels quickly through the 1200 meter (approx. 3/4 mile) thick ice to the bedrock to make the ice slide faster. This process was known for decades to enhance the flow of small mountain glaciers, but was not known to occur in the large ice sheets," Zwally said.


The meltwater makes its way from the surface to the bedrock by draining into crevasses and large tunnels called moulins that may be as large as 10 meters (approx. 33 feet) in diameter. More meltwater underneath the ice sheet provides lubrication to allow the ice sheet to move faster toward the coastline of Greenland.

Over time, as ice melts from the top of the ice sheet, the ice thins and spreads out toward lower elevations closer to the coast. The meltwater also carries heat (in the form of water) from the top of the ice to the base of the ice that sits on the bedrock.

A separate study by Abdalati and Konrad Steffen of the University of Colorado showed that the melting of the ice sheet surface has increased by nearly 20% over the last 21 years, while summer temperatures in that same period have increased by one quarter of a degree Celsius (.45º Fahrenheit). The link between ice sheet melt and ice flow suggest that the increasing melt may be more significant than previously believed.

The faster ice flow, ice thinning and consequent lowering of the surface elevation of the ice sheet can open a feedback to more melting that has not been considered in computer models that predict ice sheet response to climate change.

NASA’s ICESat mission, which is planned for launch in December of this year, will use a laser altimeter to monitor ice sheet elevations and show elevation changes as small as 1 cm/yr. ICESat’s measurements will tell us whether the ice sheets are growing or shrinking overall, how much they are contributing to sea level change, and will help predict future changes in ice volume and sea level.

Zwally and his colleagues speculate that increased movement of the ice sheet due to more meltwater underneath the ice sheet may have contributed to the demise of the Laurentide ice sheet approximately 10,000 years ago. During that time, the Earth’s axis of rotation was more tilted toward the Sun causing warmer summers in the Northern Hemisphere.

Further, they suggest that the observed process may also have contributed to the extensive melting of the Greenland Ice Sheet during the last Interglacial period, some 125,000 years ago. According to the U.S. Geological Survey, previous studies have shown that during the last Interglacial period, carbon dioxide (CO2) concentrations in the atmosphere were relatively high, temperatures may have been higher than the present, and sea level may have been approximately 6 meters (19.5 feet) higher.

"During this time when the climate was warmer, the ice sheet was less extensive. With the predicted greenhouse warming we may be returning to similar conditions," Zwally said.


This research was funded under NASA’s ICESat Project.

Rob Gutro | EurekAlert
Further information:
http://www.gsfc.nasa.gov/topstory/20020606greenland.html
http://icesat.gsfc.nasa.gov
http://www.Sciencexpress.org/

More articles from Earth Sciences:

nachricht The Antarctica Factor: model uncertainties reveal upcoming sea-level risk
14.02.2020 | Potsdam-Institut für Klimafolgenforschung

nachricht How the ocean is gnawing away at glaciers
04.02.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Electric solid propellant -- can it take the heat?

14.02.2020 | Physics and Astronomy

Pitt study uncovers new electronic state of matter

14.02.2020 | Physics and Astronomy

Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique

14.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>