Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenland ice sheet flows faster during summer melting

07.06.2002


New measurements show that the flow of ice in the Greenland ice sheet has been accelerating since 1996 during the summer melt season. The results suggest that the ice sheet may be responding more quickly to the warming climate than previously thought.



In an article published in Science magazine’s online Sciencexpress June 7, Jay Zwally, an ICESat Project scientist at the NASA Goddard Space Flight Center, Greenbelt, Md., Waleed Abdalati, a Polar Program scientist at NASA Headquarters, Washington, and colleagues report that increases in ice velocity during the summer are correlated with the timing and the intensity of ice sheet surface melting.

Using periodic Global Positioning Satellite measurements from 1996 through 1999, the researchers discovered that the ice flow speeds up from 31.3 cm (12.3 inches) per day in winter to a peak of 40 cm (15.7 inches) per day in the summer when surface melting is largest. "This study demonstrates that surface meltwater travels quickly through the 1200 meter (approx. 3/4 mile) thick ice to the bedrock to make the ice slide faster. This process was known for decades to enhance the flow of small mountain glaciers, but was not known to occur in the large ice sheets," Zwally said.


The meltwater makes its way from the surface to the bedrock by draining into crevasses and large tunnels called moulins that may be as large as 10 meters (approx. 33 feet) in diameter. More meltwater underneath the ice sheet provides lubrication to allow the ice sheet to move faster toward the coastline of Greenland.

Over time, as ice melts from the top of the ice sheet, the ice thins and spreads out toward lower elevations closer to the coast. The meltwater also carries heat (in the form of water) from the top of the ice to the base of the ice that sits on the bedrock.

A separate study by Abdalati and Konrad Steffen of the University of Colorado showed that the melting of the ice sheet surface has increased by nearly 20% over the last 21 years, while summer temperatures in that same period have increased by one quarter of a degree Celsius (.45º Fahrenheit). The link between ice sheet melt and ice flow suggest that the increasing melt may be more significant than previously believed.

The faster ice flow, ice thinning and consequent lowering of the surface elevation of the ice sheet can open a feedback to more melting that has not been considered in computer models that predict ice sheet response to climate change.

NASA’s ICESat mission, which is planned for launch in December of this year, will use a laser altimeter to monitor ice sheet elevations and show elevation changes as small as 1 cm/yr. ICESat’s measurements will tell us whether the ice sheets are growing or shrinking overall, how much they are contributing to sea level change, and will help predict future changes in ice volume and sea level.

Zwally and his colleagues speculate that increased movement of the ice sheet due to more meltwater underneath the ice sheet may have contributed to the demise of the Laurentide ice sheet approximately 10,000 years ago. During that time, the Earth’s axis of rotation was more tilted toward the Sun causing warmer summers in the Northern Hemisphere.

Further, they suggest that the observed process may also have contributed to the extensive melting of the Greenland Ice Sheet during the last Interglacial period, some 125,000 years ago. According to the U.S. Geological Survey, previous studies have shown that during the last Interglacial period, carbon dioxide (CO2) concentrations in the atmosphere were relatively high, temperatures may have been higher than the present, and sea level may have been approximately 6 meters (19.5 feet) higher.

"During this time when the climate was warmer, the ice sheet was less extensive. With the predicted greenhouse warming we may be returning to similar conditions," Zwally said.


This research was funded under NASA’s ICESat Project.

Rob Gutro | EurekAlert
Further information:
http://www.gsfc.nasa.gov/topstory/20020606greenland.html
http://icesat.gsfc.nasa.gov
http://www.Sciencexpress.org/

More articles from Earth Sciences:

nachricht Research icebreaker Polarstern begins the Antarctic season
09.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Far fewer lakes below the East Antarctic Ice Sheet than previously believed
08.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>