Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Voyage to Southern Ocean aims to study air-sea fluxes of greenhouse gases

28.02.2008
High winds and big waves are part of the data -- and the challenge

Scientists will embark this week from Punta Arenas, Chile, on the tip of South America, to spend 42 days amid the high winds and waves of the Southern Ocean. Here they hope to make groundbreaking measurements to explain how huge fluxes of climate-affecting gases move between atmosphere and sea, and vice-versa.

The cruise, which departs Feb. 28, should provide important information on how the greenhouse gas carbon dioxide moves between the ocean and atmosphere, said the cruise’s chief scientist, David Ho of Columbia University’s Lamont-Doherty Earth Observatory. Comprising 30 percent of global seas, “the Southern Ocean is a source of great uncertainty,” he said. “So it’s potentially important to our understanding of the global system.”

Humans put about 6 billion metric tons of CO2 into the air each year, mainly by fossil-fuel burning and deforestation. About a third is thought to be absorbed by oceans, and a third by plants or other components of land. The rest stays in the air—much of the reason why atmospheric CO2 is now building and climate is warming. However, there are huge uncertainties in the calculations—made so far mostly through indirect means--and fluxes seem highly variable from year to year, with some parts of the oceans habitually giving up CO2 while others absorb it. (The Southern Ocean usually absorbs it.) "Understanding how atmospheric carbon dioxide reacts with these cold surface waters is important for determining how the ocean uptake of carbon dioxide will respond to future climate change,” said Christopher Sabine, an oceanographer at the U.S. National Oceanic and Atmospheric Administration (NOAA). NOAA, NASA and the National Science Foundation are cosponsoring the cruise.

About 30 scientists from over a dozen institutions will traverse an area above Antarctica more than 1,000 miles east of Punta Arenas, aboard the 274-foot NOAA ship Ronald Brown. Here high, freezing winds unimpeded by landmasses roar much of the time, and waves can routinely top 30 feet. “The conditions are a little grim, but it’s ideal for study,” said Ho. He said that higher wind speeds correlate with faster exchange of gases, but there have been few studies aimed at directly measuring these exchanges under real-world conditions. The scientists say that wind speed itself probably does not drive gas exchange; the drivers are hard-to-observe phenomena driven by the wind, including turbulence and bubbles created by cresting waves. Another factor is the amount of phytoplankton taking CO2 from the water, which is usually measured by color. To figure out what is going on, the crew will dangle arrays of complicated instruments just above the water surface, and in the water column. “That will be a challenge, since the bow will be plunging off those big waves,” noted Sabine.

“NASA’s ongoing effort to understand the global carbon cycle will benefit from the data this cruise will produce,” said Paula Bontempi, manager of NASA’s ocean biology and biogeochemistry research program. "NASA's global satellite observations of ocean color will be improved, as we validate what our space-based sensors see with direct measurements taken at sea."

Kevin Krajick | EurekAlert!
Further information:
http://www.ei.columbia.edu

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>