Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique Martian formation reproduced, reveals brief bursts of water

22.02.2008
Researchers from the United States and the Netherlands report that several formations on Mars indicate incidents of rapid release of water from the planet’s interior.

Mars has many basins that contain formations that look like fans. A few of these fans, only about 10, have steps down into the basin. Since scientists first reported this feature three years ago, there has been no clear consensus on how they formed.

So, following an example of a project they had created for high school students, geosciences faculty members at Utrecht University in the Netherlands reproduced the process. “There are no fans with steps on earth, so we had to build one,” said Erin R. Kraal, now a geosciences research scientist at Virginia Tech.

In the article, “Martian stepped-delta formation by rapid water release,” published in the Feb. 21, 2008, issue of Nature, Kraal and her Utrect colleagues, Maurits van Dijk, George Postma, and Maarten G. Kleinhans, describe how they made a stepped fan – and what it says about at least one source of water on Mars.

In a room-sized sediment flume (5 by 12 meters or 16 by 40 feet), the researchers dug a crater in sand, then simulated water flow into the crater. “As the fan and the water level intersected, the steps appeared,” Kraal said. “As the water flows in through a channel, it erodes the sediment. The water fans out and deposits the transported sediment as deltas, building steps down into the basin.”

Once they established what had to happen to make a stepped fan in the lab, the scientists created sediment transport models and studied the morphology of the fans on Mars using satellite images and topographical date from the Mars Orbiter Laser Altimeter (MOLA). Based on fans of 20 kilometers in basins of 100 kilometers, they calculated the conditions for the creation of a stepped fan.

The researchers report that formation of stepped fans would only take 10s of years – not the hundreds to millions of years estimated for other Mars hydrologic events. But it would require a lot of water. And it would be a one-time event – the basin would not refill.

“Water volumes would be between that of the Mississippi River over the course of 10 years or the Rhine River flowing for 100 years into a 62-mile wide basin,” Kraal said.

But, looking at an image from Mars, the water channel looks nothing like the Mississippi River – being hundreds of times smaller than such a river. “We suggest the water was released internally, such as hydrothermal water suddenly pushed to the surface,” Kraal said.

She said that there are features on Mars that look like they could come from weather, but stepped fans do not.

And that high school project? The Utrecht research team cooperated with the European Geosciences Union to provide information about Mars for an EGU outreach project. Then when the Journal for Young Scientists wanted to create a movie about how fans form, the researchers arranged for the students to be filmed as they built a crater at the Eurotank lab at Utrecht and ran water into it. “At the end of the day, we discovered we had steps,” said Kraal. “The next week we started the official controlled experiments. We tested other ways to make stepped fans but this was the best way.”

Kraal has been at Virginia Tech since August 2007. She is continuing to study fans in general, and in Earth’s extremely arid areas in particular, which are an analog for the conditions on Mars.

Fans are only one aspect of her study of surface process on earth and across all planets. “I find it interesting that we can look at the same processes across planets. For instance, there appears there are fans on Titan, where the fundamental variables – gravity, the type of rock, the atmosphere – are so different,” said Kraal. “It is interesting to change the fundamental variables and look at such processes as landslides or how big scarps retreat. On Earth, vegetation has a tremendous impact on such processes. On Mars, we have purer conditions, without the influence of vegetation, allowing us to look at surfaces without this variable.”

Susan Trulove | EurekAlert!
Further information:
http://www.geos.vt.edu/people/ekraal
http://www.journal-for-young-scientists.net/content/view/34/

More articles from Earth Sciences:

nachricht Cause for variability in Arctic sea ice clarified
14.05.2019 | Max-Planck-Institut für Meteorologie

nachricht Arctic rivers provide fingerprint of carbon release from thawing permafrost
08.05.2019 | Stockholm University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>