Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Fresh Look Inside Mount St. Helens

21.02.2008
Volcanoes are notoriously hard to study. All the action takes place deep inside, at enormous temperatures. So geophysicists make models, using what they know to develop theories about what they don’t know.

Research led by Gregory P. Waite, an assistant professor of geophysics at Michigan Technological University, has produced a new seismic model for figuring out what’s going on inside Mount St. Helens, North America’s most active volcano. Waite hopes his research into the causes of the earthquakes that accompany the eruption of a volcano will help scientists better assess the hazard of a violent explosion at Mount St. Helens and similar volcanoes.

Waite and co-authors Bernard A. Chouet and Phillip B. Dawson published their findings on February 19, 2008, in the Journal of Geophysical Research. Waite’s research was conducted during a Mendenhall Postdoctoral Fellowship with the U.S. Geological Survey (USGS).

Volcanoes don’t always erupt suddenly and violently. The most recent eruption of Mount St Helens, for example, began in October 2004 and is still going on. It’s what Waite and other volcanologists call a passive eruption, with thick and sticky lava squeezing slowly out of the ground like toothpaste from a tube.

When a volcano such as Mount St Helens erupts, it can cause a series of shallow, repetitive earthquakes at intervals so regular that they’ve been called “drumbeat earthquakes.” Until now, scientists generally believed that these earthquakes were caused by the jerky movements of a solid plug of molten rock traveling up from the volcano’s core, a process known as the stick-slip model.

Modeling of seismic data collected by Waite and colleagues dispute that explanation. “The regularity and similarity of the shallow earthquakes seem consistent with a stick-slip model,” said Waite. Broadband measurements indicated that the energy is concentrated in a short bandwidth—between .5 and 2 Hz—and the earthquakes have nearly identical wave forms. Interestingly, the first motions observed at all of the seismic stations were the same.

“But this is not typical of a stick-slip event,” Waite said. “Rather, it suggests a source with a net volume change, such as a resonating fluid-filled crack.”

The fluid in the crack most likely is steam, derived from the magma and combined with water vaporized by the heat of the molten rock. A continuous supply of heat and fluid keeps the crack pressurized and the “drumbeats” beating, Waite explained.

“The pressurized crack in our model is filled with steam that could conceivably drive a small explosive eruption if the pattern (of earthquakes) we observe is disturbed,” he noted. Mount St. Helens erupted violently in 1980, losing nearly 1,000 feet of its cone-shaped top.

“The cause of Mount St. Helens earthquakes during the 2004-2008 eruption has been a matter of great debate,” said Seth Moran, the principal USGS seismologist monitoring the current eruption. “Greg collected a fantastic dataset with temporary seismometers and used highly sophisticated modeling techniques to produce a robust and intriguing model for the process responsible for those earthquakes. His model is somewhat different from the hypothesis that many other Mount St. Helens researchers have been using,” the seismologist went on to say, “and we are adjusting our understanding of the mechanics underlying the current eruption to incorporate his results.”

Waite’s co-author, Chouet, who also works for the USGS, proposed a similar seismological model for volcanoes in Hawaii, where the lava is much more fluid and flows more easily. This is the first time the model has been applied to volcanoes like Mount St. Helens, with slow-flowing, sticky lava.

Michigan Technological University is a leading public research university, conducting research, developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 120 undergraduate and graduate degree programs in engineering, forestry and environmental sciences, computer sciences, technology, business and economics, natural and physical sciences, arts, humanities and social sciences.

Jennifer Donovan | EurekAlert!
Further information:
http://www.mtu.edu

More articles from Earth Sciences:

nachricht Hundreds of bubble streams link biology, seismology off Washington's coast
22.03.2019 | University of Washington

nachricht Atmospheric scientists reveal the effect of sea-ice loss on Arctic warming
11.03.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>