Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising Temperatures Tied to Flowers’ Earlier Bloom

03.06.2002


The results of a new study suggest that rising temperatures are leaving a mark on the world. According to a report published in the current issue of the journal Science, the first flowering of plants in Britain has changed by as much as 55 days over the past few decades in response to warmer weather. The results, the scientists say, are the "strongest biological signal yet of climatic change."



Alastair Fitter of the University of York and his father, naturalist Richard Fitter, analyzed 47 years of data that the senior Fitter collected from a single location in England. They determined that, on average, the first flowering for 385 plant species in the past decade occurred 4.5 days earlier than it did between 1954 and 1990. For 16 percent of the species, the date of the first bloom advanced by 15 days and one particularly affected plant, the white dead nettle, bloomed 55 days earlier than it had three decades ago. Since the 1960s, the mean temperatures for January, February and March--important months for spring flowering plants--have increased by 1.8 degrees Fahrenheit. If global temperatures continue to increase (some predictions for future warming are more than six degrees Fahrenheit), more dramatic changes could lie ahead.

The earlier bloom affects more than just the date when a garden will burst into color, the scientists report. Because some species are changing but others are not, plants may be forced into competition with unfamiliar foes. Moreover, the development of new hybrid species could be curtailed. The violet species Viola odorata and Viola hirta, for example, used to flower simultaneously. But because the former now flowers a month sooner than the latter, they are less likely to hybridize in the future. The authors conclude that the changes they have recorded, together with alterations to species’ geographical range that often accompany climate change, will have "profound ecosystem and evolutionary consequences."

Sarah Graham | Scientific American

More articles from Earth Sciences:

nachricht Volcanoes under pressure
18.11.2019 | Technical University of Munich (TUM)

nachricht New findings on the largest natural sulfur source in the atmosphere
18.11.2019 | Leibniz-Institut für Troposphärenforschung e. V.

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Structure of a mitochondrial ATP synthase

19.11.2019 | Life Sciences

The measurements of the expansion of the universe don't add up

19.11.2019 | Physics and Astronomy

Ayahuasca compound changes brainwaves to vivid 'waking-dream' state

19.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>