Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers give new hybrid vehicle its first test drive in the ocean

11.02.2008
Profiling glider collects propulsion energy from the heat differences in the ocean

Taking a page out of a science fiction story, researchers from the Woods Hole Oceanographic Institution (WHOI) and Webb Research Corporation (Falmouth, Mass.) have successfully flown the first environmentally powered robotic vehicle through the ocean. The new robotic “glider” harvests heat energy from the ocean to propel itself across thousands of kilometers of water.

In December 2007, a research team led by oceanographers Dave Fratantoni of WHOI and Roy Watlington of the University of the Virgin Islands launched a prototype “thermal glider” off the coast of St. Thomas. The vehicle has been traveling uninterrupted ever since, crisscrossing the 4,000-meter-deep Virgin Islands Basin between St. Thomas and St Croix more than 20 times.

Engineers and researchers--including research associate John Lund and postdoctoral investigator Ben Hodges from WHOI, and engineers Clayton Jones and Tod Patterson of Webb Research--project that the thermal glider could continue its current, “green-powered” mission for as long as six months.

Unlike motorized, propeller-driven vehicles, gliders propel themselves through the ocean by changing their buoyancy to dive and surface. Wings generate lift, while a vertical tail fin and rudder allow the vehicles to be steered horizontally. Gliding underwater vehicles trace a saw-tooth profile through the ocean’s layers, surfacing periodically to fix their positions via the Global Positioning System and to communicate via Iridium satellite to a shore lab.

“Gliders can be put to work on tasks that humans wouldn’t want to do or cannot do because of time and cost concerns,” said Fratantoni, an associate scientist in the WHOI Department of Physical Oceanography. “They can work around the clock in all weather conditions.” The vehicles can carry a variety of sensors to collect measurements such as temperature, salinity, and biological productivity. Gliders also operate quietly, which makes them ideal for acoustic studies.

Though the thermal glider is not the first autonomous underwater vehicle to traverse great distances or stay at sea for long periods, it is the first to do so with green energy. Most gliders rely on battery-powered motors and mechanical pumps to move ballast water or oil from inside the vehicle’s pressure hull to outside. The idea is to increase or decrease the displacement (volume) of the glider without changing its mass.

The new thermal glider draws its energy for propulsion from the differences in temperature—thermal stratification—between warm surface waters and colder, deeper layers of the ocean. The heat content of the ocean warms wax-filled tubes inside the engine. The expansion of the warming wax converts heat to mechanical energy, which is stored and used to push oil from a bladder inside the vehicle’s hull to one outside, changing its buoyancy. Cooling of the wax at depth completes the cycle.

“We are tapping a virtually unlimited energy source for propulsion,” said Fratantoni. The computers, radio transmitters, and other electronics on the glider are powered by alkaline batteries, which are, for now, the principal limit on the length of operation. Webb Research is working to reduce the electrical needs of the instruments, while also developing the capability to convert some of the thermal energy to power for the electronics.

The thermal glider concept was conceived in the 1980s by Doug Webb, a former WHOI research specialist who founded the Webb Research Corporation. Webb collaborated extensively with renowned WHOI physical oceanographer Henry Stommel, who championed the idea to the U.S. Navy and the oceanographic community. Stommel even penned a science fiction story—published in the journal Oceanography—about a fleet of Webb’s gliding sentinels bobbing through the ocean. Webb and Stommel named the vehicles “Slocum” gliders for Joshua Slocum, the first man to single-handedly sail around the world.

Over the past decade, Fratantoni’s Autonomous Systems Laboratory has become Webb’s chief scientific partner in Woods Hole, testing and deploying the gliders in various underwater environments. Several battery-powered Slocum gliders have been deployed in shallower waters for coastal studies, for acoustics and marine mammal research, and for studies of currents and ocean circulation.

Recent funding for scientific missions and field testing of the glider system has been provided by the U.S. Office of Naval Research and the Grayce B. Kerr Fund.

“The current mission is an engineering test-drive, but it’s also occurring in a scientifically compelling location,” said Fratantoni. Swirling water currents, known as eddies, form upstream of the Virgin Islands. The data collected by the new glider system will help researchers understand how these eddies affect regional circulation and redistribute the larvae of coral reef fish and man-made pollutants.

The engineering trial for the thermal glider is the first step in a broader plan by Fratantoni and colleagues to launch a fleet of gliders for studies of the waters in the subtropical gyre of the North Atlantic, a key region for assessing the ocean’s response to climate change. He plans to test the glider with a trip from St. Thomas to Bermuda later this spring.

Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht Tiny satellites reveal water dynamics in thousands of northern lakes
15.02.2019 | Brown University

nachricht Artificial Intelligence to boost Earth system science
14.02.2019 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>