Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers give new hybrid vehicle its first test drive in the ocean

11.02.2008
Profiling glider collects propulsion energy from the heat differences in the ocean

Taking a page out of a science fiction story, researchers from the Woods Hole Oceanographic Institution (WHOI) and Webb Research Corporation (Falmouth, Mass.) have successfully flown the first environmentally powered robotic vehicle through the ocean. The new robotic “glider” harvests heat energy from the ocean to propel itself across thousands of kilometers of water.

In December 2007, a research team led by oceanographers Dave Fratantoni of WHOI and Roy Watlington of the University of the Virgin Islands launched a prototype “thermal glider” off the coast of St. Thomas. The vehicle has been traveling uninterrupted ever since, crisscrossing the 4,000-meter-deep Virgin Islands Basin between St. Thomas and St Croix more than 20 times.

Engineers and researchers--including research associate John Lund and postdoctoral investigator Ben Hodges from WHOI, and engineers Clayton Jones and Tod Patterson of Webb Research--project that the thermal glider could continue its current, “green-powered” mission for as long as six months.

Unlike motorized, propeller-driven vehicles, gliders propel themselves through the ocean by changing their buoyancy to dive and surface. Wings generate lift, while a vertical tail fin and rudder allow the vehicles to be steered horizontally. Gliding underwater vehicles trace a saw-tooth profile through the ocean’s layers, surfacing periodically to fix their positions via the Global Positioning System and to communicate via Iridium satellite to a shore lab.

“Gliders can be put to work on tasks that humans wouldn’t want to do or cannot do because of time and cost concerns,” said Fratantoni, an associate scientist in the WHOI Department of Physical Oceanography. “They can work around the clock in all weather conditions.” The vehicles can carry a variety of sensors to collect measurements such as temperature, salinity, and biological productivity. Gliders also operate quietly, which makes them ideal for acoustic studies.

Though the thermal glider is not the first autonomous underwater vehicle to traverse great distances or stay at sea for long periods, it is the first to do so with green energy. Most gliders rely on battery-powered motors and mechanical pumps to move ballast water or oil from inside the vehicle’s pressure hull to outside. The idea is to increase or decrease the displacement (volume) of the glider without changing its mass.

The new thermal glider draws its energy for propulsion from the differences in temperature—thermal stratification—between warm surface waters and colder, deeper layers of the ocean. The heat content of the ocean warms wax-filled tubes inside the engine. The expansion of the warming wax converts heat to mechanical energy, which is stored and used to push oil from a bladder inside the vehicle’s hull to one outside, changing its buoyancy. Cooling of the wax at depth completes the cycle.

“We are tapping a virtually unlimited energy source for propulsion,” said Fratantoni. The computers, radio transmitters, and other electronics on the glider are powered by alkaline batteries, which are, for now, the principal limit on the length of operation. Webb Research is working to reduce the electrical needs of the instruments, while also developing the capability to convert some of the thermal energy to power for the electronics.

The thermal glider concept was conceived in the 1980s by Doug Webb, a former WHOI research specialist who founded the Webb Research Corporation. Webb collaborated extensively with renowned WHOI physical oceanographer Henry Stommel, who championed the idea to the U.S. Navy and the oceanographic community. Stommel even penned a science fiction story—published in the journal Oceanography—about a fleet of Webb’s gliding sentinels bobbing through the ocean. Webb and Stommel named the vehicles “Slocum” gliders for Joshua Slocum, the first man to single-handedly sail around the world.

Over the past decade, Fratantoni’s Autonomous Systems Laboratory has become Webb’s chief scientific partner in Woods Hole, testing and deploying the gliders in various underwater environments. Several battery-powered Slocum gliders have been deployed in shallower waters for coastal studies, for acoustics and marine mammal research, and for studies of currents and ocean circulation.

Recent funding for scientific missions and field testing of the glider system has been provided by the U.S. Office of Naval Research and the Grayce B. Kerr Fund.

“The current mission is an engineering test-drive, but it’s also occurring in a scientifically compelling location,” said Fratantoni. Swirling water currents, known as eddies, form upstream of the Virgin Islands. The data collected by the new glider system will help researchers understand how these eddies affect regional circulation and redistribute the larvae of coral reef fish and man-made pollutants.

The engineering trial for the thermal glider is the first step in a broader plan by Fratantoni and colleagues to launch a fleet of gliders for studies of the waters in the subtropical gyre of the North Atlantic, a key region for assessing the ocean’s response to climate change. He plans to test the glider with a trip from St. Thomas to Bermuda later this spring.

Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>