Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mineral oil in old place

01.02.2008
Under contemporary conditions, it is more economically sound not to look for new oil fields but to overhaul old ones.

Oil reappears from time to time in old deposits and long ago exhausted oil wells. This phenomenon attracts attention of multiple researchers. Specialists of the Institute of Oil and Gas Problems under the guidance of Academician Dmitrievsky offer their explanation.

The earth's crust is similar to a sandwich cake, consisting of hard layers and fractured-porous layers saturated by various fluids, including oil. In some places, the crust is penetrated by an extremely dense network of fissures and ruptures. Ruptures form cavities located almost horizontally and united into a network.

All this complicated system is in constant motion due to tectonic forces’ action. The layers are moving, fissures are widening and acting as a rubber bulb: liquid starts coming into formed interstice from surrounding porous layers. In case of significant tectonic tensions, liquid moves at large distances.

According to the researchers’ opinion, this mechanism of liquid movement in the crust is the most intense and universal among all possible ones. It acts both in ruptures and in thin fractured layers, which stretch at significant distances. Vibrations in the crust drive fluids along all possible directions, including horizontal and even downward directions. Migration occurs along lengthy cavities and fractures systems, located at the depth of 10 to 15 kilometers.

Liquid movement caused by widening of internal cavities is of vibrating character. Oil sometimes rushes in or sometimes floods back. The mode and period of vibration depend on the size of perturbed area. In large porous layers, the vibration period makes about 10 thousand years. In the ruptures, the period is shorter and it varies from a thousand to hundreds and even dozens of years, if rupture zones are located at small depths.

The researchers have investigated the carbohydrates migration process from the petroliferous stratum into the upper layers in several regions. An example can be the Romashinskoye oilfield in Tatarstan. The volume of produced oil there has significantly exceeded the previously asserted reserves. According to the TATANEFT Joint Stock Company’s data, more than 65% of oil in Tatarstan is produced in old oilfields exhausted by 80%. However, supplementary exploration of the known deposits allowed to increment reserves of oil by one and a half times within the last 25 years. In the Romashinskoye oilfield, the researchers also discovered old exhausted drillings with regenerated inflow of oil and oil with water. The space of oil pools and their reserves increase with increasing rupture network density. It is interesting to note that the depth of sedimentary covering in the zone of the gigantic Romashinskoye oilfield does not exceed 2 kilometers on average, and this mantle does not possess significant oil potential. Most likely, oil cames to these locations from the direction of Pre-Ural downfold.

In the researchers’ opinion, to overhaul old oil deposits is currently much more profitable and efficient than expensive geological exploration works at new locations.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>