Climatic chain reaction caused runaway greenhouse effect 55 million years ago

Lead author is Appy Sluijs (Utrecht University, The Netherlands) and co-authors include Henk Brinkhuis, Gert-Jan Reichart (both from Utrecht University), Stefan Schouten (Royal Netherlands Institute for Sea Research: NIOZ), Jaap Sinninghe Damsté (NIOZ, UU), James C. Zachos (University of California at Santa Cruz), and Gerald R. Dickens (Rice University).

Analogous to the Earth's current situation, greenhouse warming 55 million years ago was caused by a relatively rapid increase of CO2 concentrations in the atmosphere. This phase, known as the Paleocene-Eocene thermal maximum (PETM), was studied using sediments that accumulated 55 million years ago on the ocean floor in what is now New Jersey. The new study shows that a large proportion of the greenhouse gases was released as a result of a chain-reaction of events. Probably due to intense volcanic activity, CO2 concentrations in the atmosphere became higher and the ensuing greenhouse effect warmed the Earth. As a result, submarine methane hydrates (ice-like structures in which massive amounts of methane are stored) melted and released large amounts of methane into the atmosphere. This further amplified the magnitude of global warming, which comprised about 6o C in total. The study is the first to show such a chain reaction during rapid warming in a 'greenhouse world'.

The new research confirms that global warming can stimulate mechanisms that release massive amounts of stored carbon into the atmosphere. Current and future warming will likely see similar effects, such as methane hydrate dissociation, adding additional greenhouse gases to those resulting from fossil fuel burning.

Last year, the same group of researchers showed in Nature that tropical algae migrated into the Arctic Ocean during the PETM, when temperatures rose to 24oC. Current climate models are not capable of simulating such high temperatures in the Arcti, which has repercussions for the predictions of future climate change. In addition to Al Gore’s presentation, this type of research shows what a greenhouse world looks like, including palm trees and crocodiles in the Arctic.

Earth and Sustainability
Utrecht University has organised its top-level research into fifteen focus areas, which are intended to promote high-quality research and contribute to solving major problems in society. The study described above falls under the category 'Earth and Sustainability', where research is conducted into many of the Earth's processes and how they relate to the countless dangers threatening life on Earth. This category also includes research on climate, energy, and sustainability and nanotechnologies. For more information, please visit www.uu.nl/focusgebieden.
Nature Article
‘Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary’ by Appy Sluijs, Henk Brinkhuis, Stefan Schouten, Steven M. Bohaty, Cédric M. John, James C. Zachos, Gert-Jan Reichart, Jaap S. Sinninghe Damsté, Erica M. Crouch & Gerald R. Dickens.

Media Contact

Peter van der Wilt alfa

More Information:

http://www.uu.nl

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors