Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RAVAN CubeSat measures Earth's outgoing energy

10.08.2017

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new technologies that help to measure Earth's radiation imbalance, which is the difference between the amount of energy from the Sun that reaches Earth and the amount that is reflected and emitted back into space. That difference, estimated to be less than one percent, is responsible for global warming and climate change.


A fully implemented RAVAN mission entails a constellation of multiple RAVAN satellites distributed around the planet to measure Earth's outgoing energy globally.

Credits: Johns Hopkins University Applied Physics Laboratory/Blue Canyon Technologies

Designed to measure the amount of reflected solar and thermal energy that is emitted into space, RAVAN employs two technologies that have never before been used on an orbiting spacecraft: carbon nanotubes that absorb outbound radiation and a gallium phase change blackbody for calibration.

Among the blackest known materials, carbon nanotubes absorb virtually all energy across the electromagnetic spectrum. Their absorptive property makes them well suited for accurately measuring the amount of energy reflected and emitted from Earth.

Gallium is a metal that melts -- or changes phase -- at around body temperature, making it a consistent reference point. RAVAN's radiometers measure the amount of energy absorbed by the carbon nanotubes, and the gallium phase change cells monitor the stability of the radiometers.

RAVAN began collecting and sending radiation data on Jan. 25 and has now been in operation for well past its original six-month mission timeframe.

"We've been making Earth radiation measurements with the carbon nanotubes and doing calibrations with the gallium phase change cells, so we've successfully met our mission objectives," said Principal Investigator Bill Swartz of Johns Hopkins Applied Physics Laboratory in Laurel, Maryland.

He and his team are now monitoring RAVAN in the longer term to see how much the instrument changes over time and are also performing data analysis and comparing its measurements with existing model simulations of outgoing Earth radiation.

While the technology demonstration comprises a single CubeSat, in practice a future RAVAN mission would operate many CubeSats in a constellation. Instruments for measuring Earth's outgoing energy are currently housed aboard a few large satellites, and while they have a high spatial resolution they cannot observe the entire planet simultaneously the way a constellation of RAVAN CubeSats could, Swartz explained.

"We know that outgoing radiation from Earth varies widely over time depending on variables such as clouds or aerosols or temperature changes," Swartz said. "A constellation can provide a global, 24/7 coverage that would improve these measurements."

"This successful technology demonstration realizes the potential of a new observation scenario to get at a very difficult measurement using constellation missions," said Charles Norton, program area associate for the Earth Science Technology Office (ESTO) at NASA's Jet Propulsion Laboratory in Pasadena, California. "In terms of its impact for CubeSats and Smallsats for NASA, I think It has helped to bring forward another example of how this platform can be successfully used for technology maturation, validation and science."

RAVAN and other Earth science CubeSat missions are funded and managed by NASA's Earth Science Technology Office (ESTO) in the Earth Science Division. ESTO supports technologists at NASA centers, industry and academia to develop and refine new methods for observing Earth from space, from information systems to new components and instruments.

Small satellites, including CubeSats, are playing an increasingly larger role in exploration, technology demonstration, scientific research and educational investigations at NASA, including: planetary space exploration; Earth observations; fundamental Earth and space science; and developing precursor science instruments like cutting-edge laser communications, satellite-to-satellite communications and autonomous movement capabilities.

Robert Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

nachricht Artificial Glaciers in Response to Climate Change?
10.08.2018 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>