Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid changes in the Earth's core: The magnetic field and gravity from a satellite perspective

23.10.2012
Annual to decadal changes in the earth's magnetic field in a region that stretches from the Atlantic to the Indian Ocean have a close relationship with variations of gravity in this area.
From this it can be concluded that outer core processes are reflected in gravity data. This is the result presented by a German-French group of geophysicists in the latest issue of PNAS (Proceedings of the National Academy of Sciences of the United States).

The main field of the Earth's magnetic field is generated by flows of liquid iron in the outer core. The Earth's magnetic field protects us from cosmic radiation particles. Therefore, understanding the processes in the outer core is important to understand the terrestrial shield. Key to this are measurements of the geomagnetic field itself. A second, independent access could be represented by the measurement of minute changes in gravity caused by the fact that the flow in the liquid Earth's core is associated with mass displacements. The research group has now succeeded to provide the first evidence of such a connection of fluctuations in the Earth's gravity and magnetic field.

They used magnetic field measurements of the GFZ-satellite CHAMP and extremely accurate measurements of the Earth's gravity field derived from the GRACE mission, which is also under the auspices of the GFZ. "The main problem was the separation of the individual components of the gravity data from the total signal," explains Vincent Lesur from the GFZ German Research Centre for Geosciences, who is involved in the study. A satellite only measures the total gravity, which consists of the mass fractions of Earth's body, water and ice on the ground and in the air. To determine the mass redistribution by flows in the outer core, the thus attained share of the total gravity needs to be filtered out. "Similarly, in order to capture the smaller changes in the outer core, the proportion of the magnetic crust and the proportion of the ionosphere and magnetosphere need to be filtered out from the total magnetic field signal measured by the satellite," Vincent Lesur explains. The data records of the GFZ-satellite missions CHAMP and GRACE enabled this for the first time.
During the investigation, the team focused on an area between the Atlantic and the Indian Ocean, as the determined currents flows were the highest here. Extremely fast changes (so-called magnetic jerks) were observed in the year 2007 at the Earth's surface. These are an indication for sudden changes of liquid flows in the upper outer core and are important for understanding the magneto-hydrodynamics in the Earth's core. Using the satellite data, a clear signal of gravity data from the Earth's core could be received for the first time.

This results in consequences for the existing conceptual models. Until now, for example, it was assumed that the differences in the density of the molten iron in the earth's core are not large enough to generate a measurable signal in the earth's gravitational field. The newly determined mass flows in the upper outer core allow a new approach to Earth's core hydrodynamics.

"Recent changes of the Earth's core derived from satellite observations of magnetic and gravity fields", Mioara Mandea, Isabelle Panet, Vincent Lesur, Olivier de Viron, Michel Diament, and Jean-Louis Le Mouël, PNAS 2012; doi:10.1073/pnas.1207346109

F. Ossing | EurekAlert!
Further information:
http://www.gfz-potsdam.de

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>