Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Raindrop speeds defy expectations

12.06.2009
It's conventional wisdom in atmospheric science circles: large raindrops fall faster than smaller drops, because they're bigger and heavier.

And no raindrop can fall faster than its "terminal speed"--its speed when the downward force of gravity is exactly the same as the upward air resistance. Now, a team of U.S. and Mexican researchers has found that it ain't necessarily so.

Some smaller raindrops can fall faster than bigger ones. In fact, they can fall faster than their terminal speed. In other words, they can fall faster than drops of that size and weight are supposed to be able to fall. And that could mean that the weatherman has been overestimating how much it rains, the scientists say.

"Existing rain models are based on the assumption that all drops fall at their terminal speed, but our data suggest that this is not the case," explains Raymond Shaw, a physicist at Michigan Technological University in Houghton and a member of the research team. "If rainfall is measured based on that assumption, large raindrops that are not really there will be recorded."

"If we want to forecast weather or rain, we need to understand the rain formation processes and be able to accurately measure the amount of rain," he notes. The new results could alter scientists'

understanding of the physics of rain and improve the accuracy of weather measurement and prediction.

Shaw, Alexander Kostinski, also of Michigan Tech, and Guillermo Montero-Martinez and Fernando Garcia-Garcia of the Universidad Nacional Autonoma de Mexico (National University of Mexico) in Mexico City, will publish their findings Saturday, June 13, in the American Geophysical Union's journal, Geophysical Research Letters.

During natural rainfalls at the Mexico campus, the researchers gathered data on approximately 64,000 raindrops over three years.

To study the raindrops, they used optical array spectrometer probes and a particle analysis and collecting system. They also modified an algorithm, or computational formula, to analyze raindrop sizes.

The scientists found clusters of raindrops falling faster than their terminal speed, and as the rainfall became heavier, they saw more and more of these unexpectedly speedy drops. Images revealed that the "super-terminal" drops come from the break-up of larger drops, which produces smaller fragments all moving at the same speed as their parent raindrop and faster than the terminal speed predicted by their size.

"In the past, people have seen indications of faster-than-terminal drops, but they always attributed it to splashing on the instruments," Shaw says. He and his colleagues took special precautions to prevent such interference, including collecting data only during extremely calm conditions.

This research was supported in part by the National Science Foundation.

Title:
"Do all raindrops fall at terminal speed?"
Authors:
Guillermo Montero-Martinez: Posgrado en Ciencias de la Tierra y Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Mexico City, Mexico;

Alexander B. Kostinski: Department of Physics, Michigan Technological University, Houghton, Michigan, USA;

Raymond A. Shaw: Department of Physics, Michigan Technological University, Houghton,Michigan, USA;

Fernando Garcia-Garcia: Posgrado en Ciencias de la Tierra y Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Mexico City, Mexico.

Citation:
Montero-Martinez, G., A. B. Kostinski, R. A. Shaw, and F. Garcia- Garcia (2009), Do all raindrops fall at terminal speed?, Geophys.

Res. Lett., 36, L11818, doi:10.1029/2008GL037111.

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>