Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Raindrop speeds defy expectations

12.06.2009
It's conventional wisdom in atmospheric science circles: large raindrops fall faster than smaller drops, because they're bigger and heavier.

And no raindrop can fall faster than its "terminal speed"--its speed when the downward force of gravity is exactly the same as the upward air resistance. Now, a team of U.S. and Mexican researchers has found that it ain't necessarily so.

Some smaller raindrops can fall faster than bigger ones. In fact, they can fall faster than their terminal speed. In other words, they can fall faster than drops of that size and weight are supposed to be able to fall. And that could mean that the weatherman has been overestimating how much it rains, the scientists say.

"Existing rain models are based on the assumption that all drops fall at their terminal speed, but our data suggest that this is not the case," explains Raymond Shaw, a physicist at Michigan Technological University in Houghton and a member of the research team. "If rainfall is measured based on that assumption, large raindrops that are not really there will be recorded."

"If we want to forecast weather or rain, we need to understand the rain formation processes and be able to accurately measure the amount of rain," he notes. The new results could alter scientists'

understanding of the physics of rain and improve the accuracy of weather measurement and prediction.

Shaw, Alexander Kostinski, also of Michigan Tech, and Guillermo Montero-Martinez and Fernando Garcia-Garcia of the Universidad Nacional Autonoma de Mexico (National University of Mexico) in Mexico City, will publish their findings Saturday, June 13, in the American Geophysical Union's journal, Geophysical Research Letters.

During natural rainfalls at the Mexico campus, the researchers gathered data on approximately 64,000 raindrops over three years.

To study the raindrops, they used optical array spectrometer probes and a particle analysis and collecting system. They also modified an algorithm, or computational formula, to analyze raindrop sizes.

The scientists found clusters of raindrops falling faster than their terminal speed, and as the rainfall became heavier, they saw more and more of these unexpectedly speedy drops. Images revealed that the "super-terminal" drops come from the break-up of larger drops, which produces smaller fragments all moving at the same speed as their parent raindrop and faster than the terminal speed predicted by their size.

"In the past, people have seen indications of faster-than-terminal drops, but they always attributed it to splashing on the instruments," Shaw says. He and his colleagues took special precautions to prevent such interference, including collecting data only during extremely calm conditions.

This research was supported in part by the National Science Foundation.

Title:
"Do all raindrops fall at terminal speed?"
Authors:
Guillermo Montero-Martinez: Posgrado en Ciencias de la Tierra y Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Mexico City, Mexico;

Alexander B. Kostinski: Department of Physics, Michigan Technological University, Houghton, Michigan, USA;

Raymond A. Shaw: Department of Physics, Michigan Technological University, Houghton,Michigan, USA;

Fernando Garcia-Garcia: Posgrado en Ciencias de la Tierra y Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Mexico City, Mexico.

Citation:
Montero-Martinez, G., A. B. Kostinski, R. A. Shaw, and F. Garcia- Garcia (2009), Do all raindrops fall at terminal speed?, Geophys.

Res. Lett., 36, L11818, doi:10.1029/2008GL037111.

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>