Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quirky glacial behavior explained

30.11.2018

Detailed observations of Greenland's Jakobshavn Isbræ help explain dynamic tidewater glacier speedup and slowdown

In August 2012, in the frigid wilderness of West Greenland, the Jakobshavn Glacier was flowing and breaking off into the sea at record speeds, three times faster than in previous years. An underwater calving event had caused the massive glacier to lose its footing. But the movement was not linear like a runaway train (as previous studies suggested), but dynamic: drastically speeding up, then slowing down after a few days.


Jakobshavn Isbrae during Cassotto's 2012 field campaign. Look closely, a 19-seater tourist helicopter hovers above the ice.

Credit: Ryan Cassotto/CIRES and CU Boulder

Now, a new assessment by a multi-institutional, CIRES-led team has harnessed a novel, highly detailed dataset to identify the factors that caused the speedup and slowdown. As the glacier flowed faster, it became thinner and more unstable--and then, in a twist, a pileup of thick ice replenished the glacier's terminus, slowing it down again.

The work, published today in the Journal of Glaciology, may help scientists better predict how tidewater glaciers contribute to sea level rise.

"As tidewater glaciers, like Jakobshavn Isbræ, thin they become increasingly sensitive to small variations in ice thickness," said Ryan Cassotto, CIRES researcher and lead author of the new study, which was conducted while he was a doctoral student at the University of New Hampshire. "This is because water pressure at the base of the glacier counters pressure from the weight of ice above it, which impacts how fast the glacier flows."

For tidewater glaciers grounded deep below sea level, thicker, heavier ice travels slower, and thinner, lighter ice, faster. It's similar, Cassotto said, to the way different sized cars hydroplane: large, heavy truck tend to be very stable and resist sliding while lightweight, compact cars readily slip."

Autoplay video here of 2012 ice calving

Jakobshavn Isbræ, the subject of James Balog's 2012 documentary "Chasing Ice," produces some of the largest icebergs and fastest speeds in the Arctic. And since iceberg calving contributes significantly to sea level rise, it's critical to understand the glacier dynamics and calving events that produce them, the researchers said.

"Over the last two decades, Jakobshavn Isbræ has discharged more ice than any other glacier in Greenland," said Cassotto. "It alone contributes about three percent of the current rise in global sea level annually."

The research team, which included coauthors from the University of Alaska Fairbanks, the University of Alaska Southeast, the University of New Hampshire, and The Ohio State University, harnessed new techniques to observe the glacier at a level of detail never seen before.

They used instruments called ground-based radar interferometers to observe how the ice surface was deforming, measuring every three minutes. Calving events happen in a matter of minutes and so they often can't be caught by satellite-based instruments that repeat measurements only every 11 days.

Cassotto and his team found the geometry of the fjord bed is critically important to understanding glacier speed, as others have proposed. The new work shows that even small changes at the ends of glaciers, those last several hundred feet moving out toward the ocean, can profoundly affect speed.

Media Contact

Ryan Cassotto, lead researcher
ryan.cassotto@colorado.edu
303-492-1790

 @cubouldernews

http://www.colorado.edu/news 

Ryan Cassotto, lead researcher | EurekAlert!

More articles from Earth Sciences:

nachricht Climate Change in West Africa
17.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Determining the Earth’s gravity field more accurately than ever before
13.06.2019 | Technische Universität Graz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>