Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Princeton-led team finds secret ingredient for the health of tropical rainforests

10.12.2008
A team of researchers led by Princeton University scientists has found for the first time that tropical rainforests, a vital part of the Earth's ecosystem, rely on the rare trace element molybdenum to capture the nitrogen fertilizer needed to support their wildly productive growth. Most of the nitrogen that supports the rapid, lush growth of rainforests comes from tiny bacteria that can turn nitrogen in the air into fertilizer in the soil.

Until now, scientists had thought that phosphorus was the key element supporting the prodigious expansion of rainforests, according to Lars Hedin, a professor of ecology and evolutionary biology at Princeton University who led the research.

But an experiment testing the effects of various elements on test plots in lowland rainforests on the Gigante Peninsula in the Barro Colorado Nature Monument in Panama showed that areas treated with molybdenum withdrew more nitrogen from the atmosphere than other elements.

"We were surprised," said Hedin, who is also a professor in the Princeton Environmental Institute. "It's not what we were expecting."

The report, detailed in the Dec. 7 online edition of Nature Geoscience, will be the journal's cover story in its print edition.

Molybdenum, the team found, is essential for controlling the biological conversion of nitrogen in the atmosphere into natural soil nitrogen fertilizer, which in turn spurs plant growth. "Just like trace amounts of vitamins are essential for human health, this exceedingly rare trace metal is indispensable for the vital function of tropical rainforests in the larger Earth system," Hedin said. Molybdenum is 10,000 times less abundant than phosphorus and other major nutrients in these ecosystems.

The discovery has implications for global climate change policy, the scientists said. Previously, researchers knew little about rainforests' capacity to absorb the greenhouse gas carbon dioxide. If molybdenum is central to the biochemical processes involved in the uptake of carbon dioxide, then there may be limits to how much carbon that tropical rainforests can absorb.

The biological enzyme, nitrogenase, which converts atmospheric nitrogen into soil fertilizer, feeds on molybdenum, the researchers found. "Nitrogenase without molybdenum is like a car engine without spark plugs," said Alexander Barron, the lead author on the paper, who was a graduate student in Hedin's laboratory and earned his Ph.D. in ecology and evolutionary biology from Princeton in 2007 and who now is working on climate legislation in Congress.

Other authors on the paper from Princeton include: Anne Kraepiel, an associate research scholar in the Department of Chemistry; Nina Wurzburger, a research associate in the Department of Ecology and Evolutionary Biology; and Jean Philippe Bellenger, an associate research scholar in the Princeton Environmental Institute. S. Joseph Wright, who earned his bachelor's degree in biology from Princeton in 1974 and now is a staff scientist at the Smithsonian Tropical Institute in Panama, is also a contributing author.

Molybdenum, a lustrous, silvery metal, is found in soil, rock and sea water and in a range of enzymes vital to human health. Traces of the element have been found in Japanese swords dating back to the 14th century. In modern times, its high strength, good electrical conductivity and anticorrosive properties have made molybdenum desirable as an element of rocket engines, radiation shields, light bulb filaments and circuit boards.

The research was conducted with support from the National Science Foundation, the Andrew W. Mellon Foundation, the Smithsonian Scholarly Studies program, the Smithsonian Tropical Research Institute student fellowship program and the Environmental Protection Agency student fellowship program.

Kitta MacPherson | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>