Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New predictions for sea level rise

28.07.2009
Fossil coral data and temperature records derived from ice-core measurements have been used to place better constraints on future sea level rise, and to test sea level projections.

The results are published today in Nature Geoscience and predict that the amount of sea level rise by the end of this century will be between 7- 82 cm – depending on the amount of warming that occurs – a figure similar to that projected by the IPCC report of 2007.

Placing limits on the amount of sea level rise over the next century is one of the most pressing challenges for climate scientists. The uncertainties around different methods to achieve accurate predictions are highly contentious because the response of the Greenland and Antarctic ice sheets to warming is not well understood.

Dr Mark Siddall from the University of Bristol, together with colleagues from Switzerland and the US, used fossil coral data and temperature records derived from ice-core measurements to reconstruct sea level fluctuations in response to changing climate for the past 22,000 years, a period that covers the transition from glacial maximum to the warm Holocene interglacial period.

By considering how sea level has responded to temperature since the end of the last glacial period, Siddall and colleagues predict that the amount of sea level rise by the end of this century will be similar to that projected by the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC).

Dr Siddall said: "Given that the two approaches are entirely independent of each other, this result strengthens the confidence with which one may interpret the IPCC results. It is of vital importance that this semi-empirical result, based on a wealth of data from fossil corals, converges so closely with the IPCC estimates.

"Furthermore, as the time constant of the sea level response is 2,900 years, our model indicates that the impact of twentieth-century warming on sea level will continue for many centuries into the future. It will therefore constitute an important component of climate change in the future."

The IPCC used sophisticated climate models to carry out their analysis, whereas Siddall and colleagues used a simple, conceptual model which is trained to match the sea level changes that have occurred since the end of the last ice age.

The new model explains much of the variability observed over the past 22,000 years and, in response to the minimum (1.1 oC) and maximum (6.4 oC) warming projected for AD 2100 by the IPCC model, this new model predicts, respectively, 7 and 82 cm of sea-level rise by the end of this century. The IPCC model predicted a slightly narrower range of sea level rise – between 18 and 76 cm.

The researchers emphasise that because we will be at least 200 years into a perturbed climate state by the end of this century, the lessons of long-term change in the past may be key to understanding future change. END

The paper: Constraints on future sea-level rise from past sea-level reconstructions. Mark Siddall, Thomas F. Stocker and Peter U. Clark. Nature Geoscience: http://dx.doi.org/10.1038/NGEO587. Once the paper is published electronically, the DOI can be used to retrieve the abstract and full text (abstracts are available to everyone, full text only to subscribers) by adding it to the following URL: http://dx.doi.org/

Funding: Mark Siddall acknowledges support from Lamont Doherty Earth Observatory, where part of this work was done, and the University of Bristol (LDEO and RCUK fellowships). Support from the Swiss National Science Foundation and the University of Bern (Thomas F. Stocker) and the US National Science Foundation (Peter U. Clark) is also acknowledged.

Issued by: Public Relations Office, Communications and Marketing Services, University of Bristol. Contact: Cherry Lewis, Research Communications Manager. Tel: 0117 928 8086, mob: 07729 421885, email: Cherry.lewis@bristol.ac.uk

Cherry Lewis | EurekAlert!
Further information:
http://www.bristol.ac.uk

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>