Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pre-eruption earthquakes offer clues to volcano forecasters

17.12.2009
Like an angry dog, a volcano growls before it bites, shaking the ground and getting "noisy" before erupting.

This activity gives scientists an opportunity to study the tumult beneath a volcano and may help them improve the accuracy of eruption forecasts, according to Emily Brodsky, an associate professor of Earth and planetary sciences at the University of California, Santa Cruz.

Brodsky will present recent findings on pre-eruption earthquakes on Wednesday, December 16, at the fall meeting of the American Geophysical Union in San Francisco.

Each volcano has its own personality. Some rumble consistently, while others stop and start. Some rumble and erupt the same day, while others take months, and some never do erupt. Brodsky is trying to find the rules behind these personalities.

"Volcanoes almost always make some noise before they erupt, but they don't erupt every time they make noise," she said. "One of the big challenges of a volcano observatory is how to handle all the false alarms."

Brodsky and Luigi Passarelli, a visiting graduate student from the University of Bologna, compiled data on the length of pre-eruption earthquakes, time between eruptions, and the silica content of lava from 54 volcanic eruptions over a 60-year span. They found that the length of a volcano's "run-up"--the time between the onset of earthquakes and an eruption--increases the longer a volcano has been dormant or "in repose." Furthermore, the underlying magma is more viscous or gummy in volcanoes with long run-up and repose times.

Scientists can use these relationships to estimate how soon a rumbling volcano might erupt. A volcano with frequent eruptions over time, for instance, provides little warning before it blows. The findings can also help scientists decide how long they should stay on alert after a volcano starts rumbling.

"You can say, 'My volcano is acting up today, so I'd better issue an alert and keep that alert open for 100 days or 10 days, based on what I think the chemistry of the system is,' " Brodsky said.

Volcano observers are well-versed in the peculiarities of their systems and often issue alerts to match, according to Brodsky. But this study is the first to take those observations and stretch them across all volcanoes, she said.

"The innovation of this study is trying to stitch together those empirical rules with the underlying physics and find some sort of generality," Brodsky said.

The underlying physics all lead back to magma, she said. When the pressure in a chamber builds high enough, the magma pushes its way to the volcano's mouth and erupts. The speed of this ascent depends on how viscous the magma is, which depends in turn on the amount of silica in the magma. The less silica, the runnier the magma. The runnier the magma, the quicker the volcanic chamber fills and the quicker it will spew, according to Brodsky.

The path from chamber to surface isn't easy for magma as it forces its way up through the crust. The jostling of subsurface rock causes pre-eruption tremors, which oscillate in length and severity based on how freely the magma can move.

"If the magma's very sticky, then it takes a long time both to recharge the chamber and to push its way to the surface," Brodsky said. "It extends the length of precursory activity."

Thick magma is the culprit behind the world's most explosive eruptions, because it traps gas and builds pressure like a keg, she said. Mount St. Helens is an example of a volcano fed by viscous magma.

Brodsky and Passarelli diagrammed the dynamics of magma flow using a simple analytical model of fluids moving through channels. The next step, Brodsky said, is to test the accuracy of their predictions on future eruptions.

Volcanoes are messy systems, however, with wildly varying structures and mineral ingredients. Observatories will likely have to tweak their predictions based on the unique characteristics of each system, she said.

In addition to Brodsky and Passarelli, Stephanie Prejean of the U.S. Geological Survey's Alaska Volcano Observatory contributed to the study that Brodsky will present at the AGU meeting.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Earth Sciences:

nachricht Geomagnetic jerks finally reproduced and explained
23.04.2019 | CNRS

nachricht "Flight recorder" of rocks within the Earth’s crust
16.04.2019 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>