Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poison in the Arctic and the human cost of 'clean' energy

08.09.2015

Hydroelectric energy may be more damaging to northern ecosystems than climate change

Methylmercury, a potent neurotoxin, is especially high in Arctic marine life but until recently, scientists haven't been able to explain why. Now, research from the Harvard John A. Paulson School of Engineering and Applied Science (SEAS) and Harvard T.H. Chan School of Public Health suggests that high levels of methylmercury in Arctic life are a byproduct of global warming and the melting of sea-ice in Arctic and sub-Arctic regions.


Rigolet is on the shore of Lake Melville.

Credit: Prentiss Balcom

To mitigate global warming, many governments are turning to hydroelectric power but the research also suggests that flooding for hydroelectric development will put even more methylmercury into ecosystems than climate change.

The research, published in PNAS, began as a review of the environmental impact assessment for the Muskrat Falls hydroelectric dam in Labrador, Canada, which, in 2017, will flood a large region upstream from an estuarine fjord called Lake Melville. The majority of the lake lies in Nunatsiavut, the first autonomous region in Canada governed by Inuit. The predominantly indigenous communities along Lake Melville rely on the lake as a primary source of food.

When an impact report predicted no adverse downstream effects into Lake Melville from the flooding, the Nunatsiavut Government reached out to Elsie Sunderland, associate professor of environmental engineering at SEAS and environmental health at the Harvard Chan School, for help.

"Clean energy benefits the entire world but the costs of hydroelectric power are often assumed entirely by the Aboriginal communities who live next to these developments," said Sunderland. "Our research highlights some of the costs to the community with the goal of helping them plan and adapt to the changes that are about to occur."

Sunderland and her team -- including lab manager Prentiss Balcom and postdoctoral fellow Amina Schartup, the paper's first author -- made their first trip to Lake Melville in 2012. They collected baseline methylmercury levels on a fishing boat called "What's Happening" -- which was exactly the question Sunderland and her team asked when the results came in.

"We found more methylmercury in the water than our modeling could explain," said Schartup. "All of the methylmercury from the rivers feeding into Lake Melville and from the sediment at the bottom of the lake couldn't account for the levels in the water. There was something else going on here."

The team noted that the concentration of methylmercury in biota -- the plankton --peaked between 1 and 10 meters below the surface.

These findings closely matched findings from the central Arctic Ocean. The question was, why was there such a high concentration of methylmercury in biota in both systems?

The answer lay in the eating habits of plankton.

When fresh and salt water meet-- in estuaries or when sea-ice melts in the ocean-- salinity increases as water deepens. This stratification allows fluffy organic matter that typically sinks to the bottom to reach a neutral buoyancy -- meaning it can't float up or down in the water column. This layer, called marine snow, collects other small settling debris and concentrates it into a feeding zone for marine plankton. The bacteria stuck in this zone are performing a complex chemical process that turns naturally occurring mercury into deadly and readily accumulated methylmercury.

Attracted to this layer of marine snow, the zooplankton go on a feeding frenzy that can last several weeks. In this time, methylmercury produced by the bacteria accumulates in biota and magnifies as it works its way up the food chain.

"This system is incredibly efficient at accumulating methylmercury," said Schartup.

This same system can be extrapolated to the Arctic, where freshwater from melting ice is mixing with salt water, Schartup said.

If this system is already a pro at magnifying methylmercury, what happens when methylmercury levels increase due to reservoir flooding upstream?

Sunderland and her team collected soil cores from the inland areas that are slated to be flooded for hydroelectric power in 2017. The team simulated flooding by covering the cores with river water. Within five days, methylmercury levels in the water covering the cores increased 14 fold. Estimated increases in methylmercury inputs from the Churchill River resulting from this pulse of methylmercury range from 25 to 200 percent.

That's the low estimate.

"We removed the litter layer and surface vegetation prior to saturating the cores, which is known to decrease methylmercury levels, " Sunderland said. "Without clearing that, the actual pulse of methlymercury to the Lake Melville ecosystem may be much greater."

For communities who rely on the ecosystem for food, like those along Lake Melville, the downstream effects of flooding for hydroelectric development could be devastating.

"Scientists have a responsibility to understand and explain how environmental systems will react before they are modified," Schartup said. "Because once the damage is done, you can't take it back."

Leah Burrows | EurekAlert!

More articles from Earth Sciences:

nachricht Seismic study reveals huge amount of water dragged into Earth's interior
18.12.2018 | National Science Foundation

nachricht A damming trend
17.12.2018 | Michigan State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>