Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pockmark fields off Helgoland

12.07.2017

Researchers discover methane vents in the German Bight

Within a period of a few months thousands of craters formed on the sea bed off the North Sea island of Helgoland. Gas escaping out of the sea floor entrained sand and upon settling created mounds. For the first time evidence for massive methane release has been discovered in the area of Helgoland Reef. Knut Krämer of MARUM – Center for Marine Environmental Sciences at the University of Bremen and colleagues have published their findings in the journal Scientific Reports.


Onboard R/V Heincke, Knut Krämer prepares a sound velocity probe for surveying the sea floor with the multibeam echosounder.

MARUM – Center for Marine Environmental Sciences, University of Bremen; Gabriel Herbst.

“We were surprised to suddenly find a crater landscape in an area that used to be a flat expanse of sand”, says Knut Krämer, first author of the article and PhD student at MARUM – Center for Marine Environmental Sciences at the University of Bremen.

Based on detailed surveys, the study describes a dramatic transformation in the Helgoland Reef region about 45 kilometers northwest of Helgoland. Until July 2015, this area was characterized by an almost flat and featureless sea floor. More recent mapping in November 2015 revealed a bottom strewn with depressions the size of tennis courts.

Subsequent cruises with the research vessel Heincke in August and September 2016 confirmed that these craters covered an area of around 915 square kilometers, more than twice the area of the State of Bremen. Each square kilometer can contain up to 1,200 craters. Based on the associated high concentrations of methane in the sediments, the craters were identified as pockmarks.

Bacteria generate methane

The term pockmark is used to designate characteristic craters on sea beds that are formed by the release of liquids or gases from the sub-seafloor. They can be found worldwide in different types of water bodies, including lakes, rivers, estuaries, and in coastal to deep ocean waters. In clay-rich sediments and under low current and wave conditions, they can sometimes persist over centuries and remain as evidence of past gas releases.

In shallow coastal waters with sandy bottoms, under the forcing of tidal currents and waves, the craters are quickly erased, and therefore have been rarely observed before. Prior to the postglacial sea level rise, however, the near-coastal regions in particular were often wetlands and thus rich in organic material. Methane is commonly produced by the bacterial breakdown of this material. The gas can then accumulate underneath impermeable layers below the sea floor. Methane released into the atmosphere acts as a greenhouse gas approximately 25 times more effective than carbon dioxide (CO2).

Measurements by the research team have shown that around 6.9 million cubic meters of sediment were displaced as a result of the methane ejection – sand that would fill 200,000 standard shipping containers. “The total amount of methane released is difficult to estimate. We do not know exactly how the gas was distributed in the substrate prior to the release,” explains Knut Krämer. “But even a conservative estimate suggests an amount of around 5,000 metric tons. This would be equivalent to about two-thirds of the previously assumed annual emission of the entire North Sea.”

The sea floor is altered by currents and waves

Krämer and his co-authors presume that the trigger for the pockmark ejections was a series of storms with waves up to seven meters high and periods of around ten seconds that caused large pressure fluctuations in the sea bed. These acted like a pump on the gas stored there. The sea floor eventually yielded to the gas pressure and the gas escaped into the water column, dragging sediment with it. This was then redeposited on the lee side of the current or wave, producing a characteristic pattern of craters and mounds.

“This study is an excellent example of cooperation among various institutes that are involved in coastal research,” says PD Dr. Christian Winter, chief scientist of the survey expedition and leader of the Coastal Dynamics working group at MARUM. “We obtain measurements together on the German research ships and combine the expertise of different disciplines.”

The Helgoland Reef pockmarks are the first to be observed of this form in the German Bight. Knut Krämer surmises that “the frequency of triggering storm waves suggests that this could be a recurring phenomenon that has been previously overlooked”. Detection of the relatively shallow craters has only become possible through recent advances in the development of highly accurate multibeam echosounders. It is also assumed that the craters, located in mobile, sandy sediments, will quickly be leveled again by waves and currents as soon as no more methane is being released.

Compared to methane emissions caused by humans, the amount from the pockmark field discovered here is small. It is equal to only 0.5 per cent of the annual anthropogenic methane emissions by Germany. It is believed, however, that coastal regions worldwide with rich methane occurrences are in a similar state of instability. It is therefore possible that highly dynamic coastal regions have been overlooked as an important contributor to the global methane budget, says Knut Krämer. “We hope that our article will help to stimulate scientific discussion and further investigations of these kinds of methane sources.”

Contact:
Knut Krämer
Telephone: 0421-21865582
Email: kkraemer@marum.de

Original publication:
Knut Krämer, Peter Holler, Gabriel Herbst, Alexander Bratek, Soeren Ahmerkamp, Andreas Neumann, Alexander Bartholomä, Justus E.E. van Beusekom, Moritz Holtappels und Christian Winter: Abrupt emergence of a large pockmark field in the German Bight, southeastern North Sea. Scientific Reports 7, 2017; DOI: 10.1038/s41598-017-05536-1

Weitere Informationen:

http://www.marum.de/en/Discover/Pockmark-fields-off-Helgoland.html

Ulrike Prange | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>