Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Permafrost's turn of the microbes

05.03.2015

Study reveals clues to how drowsy microbes in Arctic tundra change to methane-makers as permafrost thaws

As the Arctic warms, tons of carbon locked away in Arctic tundra will be transformed into the powerful greenhouse gases carbon dioxide and methane, but scientists know little about how that transition takes place. Now, scientists looking at microbes in different types of Arctic soil have a new picture of life in permafrost that reveals entirely new species and hints that subzero microbes might be active.


This is Jenni Hultmann prepping the frozen permafrost samples prior to multi-omics analysis.

Credit: Janet Jansson

Such information is key to prepare for the release of gigatons of methane, which could set the Earth on a path to irreversible global warming. Appearing in today's issue of Nature, the study will help researchers better understand when and how frozen carbon might get converted into methane.

The results suggest how microbes survive in the subzero temperatures of permafrost. "The microbes in permafrost are part of Earth's dark matter. We know so little about them because the majority have never been cultivated and their properties are unknown," said microbiologist Janet Jansson of the Department of Energy's Pacific Northwest National Laboratory. "This work hints at the life strategies they use when they've been frozen for thousands of years."

Tundra tales

Permafrost, the layer of Arctic ground that is always frozen, lies underneath a layer that thaws and refreezes every year, which scientists call the "active layer".

Permafrost locks carbon away in vegetative matter. Microbes in the bog generate methane from this carbon, but researchers aren't sure how the soil microbes go from frozen to marshy methane producers.

"Estimates are that permafrost stores between 780 and 1,400 gigatons of terrestrial carbon. That's a huge reservoir," said Jansson. "What happens when permafrost thaws and trapped carbon is available for microbes?"

Previous experiments by Jansson and collaborators have shown that thawing frozen soil in the lab quickly leads to a burst of methane production, along with a change in the community of microbes. For this study, Jansson and colleagues wanted to examine how natural thawing affected microbes in tundra transitioning from permafrost to bog in the Arctic.

To get an overall picture of how the communities transform from frozen snoozers to bustling bacteria, they used a combination of molecular tools collectively known as "omics". These tools revealed the particular genes the microbes are equipped with, which genes they turn on, and the proteins they wield that allow them to survive on the resources around them.

To do this, Jansson and colleagues explored permafrost, active layer, and bog soil samples collected by researchers with the United States Geological Survey. They identified microbial genes and their activity with help from DOE's Joint Genome Institute in Walnut Creek CA. And they collaborated with scientists from several universities, national laboratories and biotechnology companies to identify proteins in the various soils. Beginning this research at DOE's Lawrence Berkeley National Laboratory, Jansson completed the analyses at DOE's Pacific Northwest National Laboratory.

Life in the cryosphere

Gene information told the researchers which microbe species were present in each layer, how closely they were related to each other and what they could potentially be doing. They found an undiscovered diversity of microbes in Arctic soils and were able to describe several completely novel microbes in each type of soil.

Gene activity and the presence of proteins, which are a microbe's tools for living, indicated what the microbes were doing. For example, even though the permafrost microbes lived at subzero temperatures and had a lot of proteins for protection against freezing conditions, they also wielded proteins that indicated they could move through the soil, use iron for energy or live on methane.

Soil microbes in the active layer had other protein tools that would let them find nutrients in an environment that goes through cycles of freezing and thawing.

As expected, the bog microbes showed gene activity and protein tools for producing methane, and the team identified many species whose main job is to make methane, called methanogens. However, the team was surprised to find several brand new species of them. Methanogens, old and new, took over the communities that lived in the bog.

"This work provides the first demonstration of this combination of omics tools to gain a more mechanistic understanding of life in permafrost and the changes that occur during natural thaw," said Jansson. "We know changes happen as permafrost turns into bog, but we don't yet know the significance of these changes at a molecular level."

###

This work was primarily supported by the Department of Energy's Office of Science, the United States Geological Survey and the Academy of Finland.

Reference: Jenni Hultman, Mark P. Waldrop, Rachel Mackelprang, Maude M. David, Jack McFarland, Steven J. Blazewicz, Jennifer Harden, Merritt R. Turetsky, A. David McGuire, Manesh B. Shah, Nathan C. VerBerkmoes, Lang Ho Lee, Kostas Mavrommatis, Janet K. Jansson. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes, Nature March 4, 2015, doi:10.1038/nature14238. (In press.)

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,300 staff and has an annual budget of more than $1 billion. It is managed by Battelle for the U.S. Department of Energy's Office of Science. As the single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information on PNNL, visit the PNNL News Center, or follow PNNL on Facebook, Google+, LinkedIn and Twitter.

The U.S. Department of Energy Joint Genome Institute, User Facility of Lawrence Berkeley National Laboratory supported by the DOE Office of Science, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI, headquartered in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @doe_jgi on Twitter.

Media Contact

Mary Beckman
mary.beckman@pnnl.gov
509-375-3688

 @PNNLNews

http://www.pnnl.gov/news 

Mary Beckman | EurekAlert!

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>