Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researcher helps discover and characterize a 300-million-year-old forest

21.02.2012
Pompeii-like, a 300-million-year-old tropical forest was preserved in ash when a volcano erupted in what is today northern China.

A new study by University of Pennsylvania paleobotanist Hermann Pfefferkorn and colleagues presents a reconstruction of this fossilized forest, lending insight into the ecology and climate of its time.

Pfefferkorn, a professor in Penn's Department of Earth and Environmental Science, collaborated on the work with three Chinese colleagues: Jun Wang of the Chinese Academy of Sciences, Yi Zhang of Shenyang Normal University and Zhuo Feng of Yunnan University.

Their paper will be published next week in the Early Edition of the Proceedings of the National Academy of Sciences.

The study site, located near Wuda, China, is unique as it gives a snapshot of a moment in time. Because volcanic ash covered a large expanse of forest over the course of only a few days, the plants were preserved as they fell, in many cases in the exact locations where they grew.

"It's marvelously preserved," said Pfefferkorn. "We can stand there and find a branch with the leaves attached, and then we find the next branch and the next branch and the next branch. And then we find the stump from the same tree. That's really exciting." The researchers also found some smaller trees with leaves, branches, trunk and cones intact, preserved in their entirety.

Due to nearby coal mining activities unearthing large tracts of rock, the size of the researchers' study plots is also unusual. They were able to examine a total of 1,000 m2 of the ash layer in three different sites located near one another—an area considered large enough to meaningfully characterize the local paleoecology.

The fact that the coal beds exist is a legacy of the ancient forests, which were peat-depositing tropical forests. The peat beds, pressurized over time, transformed into the coal deposits.

The scientists were able to date the ash layer to approximately 298 million years ago. That falls at the beginning of a geologic period called the Permian, during which Earth's continental plates were still moving toward each other to form the supercontinent Pangea. North America and Europe were fused together, and China existed as two smaller continents. All overlapped the equator and thus had tropical climates.

At that time, Earth's climate was comparable to what it is today, making it of interest to researchers like Pfefferkorn who look at ancient climate patterns to help understand contemporary climate variations.

In each of the three study sites, Pfefferkorn and collaborators counted and mapped the fossilized plants they encountered. In all, they identified six groups of trees. Tree ferns formed a lower canopy while much taller trees—Sigillaria and Cordaites—soared up to 80 feet above the ground. The researchers also found nearly complete specimens of a group of trees called Noeggerathiales. These extinct spore-bearing trees, relatives of ferns, had been identified from sites in North America and Europe, but appeared to be much more common in these Asian sites.

They also observed that the three sites were somewhat different from one another in plant composition. In one site, for example, Noeggerathiales were fairly uncommon, while they made up the dominant plant type in another site. The researchers worked with painter Ren Yugao to depict accurate reconstructions of all three sites.

"This is now the baseline," said Pfefferkorn. "Any other finds, which are normally much less complete, have to be evaluated based on what we determined here."

The findings are indeed "firsts" on many counts. "This is the first such forest reconstruction in Asia for any time interval, it's the first of a peat forest for this time interval and it's the first with Noeggerathiales as a dominant group," Pfefferkorn said.

Because the site captures just one moment in Earth's history, Pfefferkorn noted that it cannot alone explain how climate changes affected life on Earth. But it helps provide valuable context.

"It's like Pompeii: Pompeii gives us deep insight into Roman culture, but it doesn't say anything about Roman history in and of itself," said Pfefferkorn. "But on the other hand, it elucidates the time before and the time after. This finding is similar. It's a time capsule and therefore it allows us now to interpret what happened before or after much better."

The study was supported by the Chinese Academy of Science, the National Basic Research Program of China, the National Natural Science Foundation of China and the University of Pennsylvania.

Katherine Unger Baillie | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Earth Sciences:

nachricht The struggle for life in the Dead Sea sediments: Necrophagy as a survival mechanism
26.03.2019 | Geological Society of America

nachricht Mangroves and their significance for climate protection
26.03.2019 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>