Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen theory of mass extinction questioned by new research findings

09.09.2008
Several theories have been proposed by scientists to explain the two mass extinction events which took place on the earth 250 and 200 million years ago.

The Permian-Triassic catastrophe (250 million years ago) was the worst of all five of the mass extinction events to ever have befallen the earth. It eradicated almost 95% of all species, 53% of marine families, 84% of marine genera and an approximated 70% of all land species including plants, insects and vertebrate animals.

Many scientists suspect that the event was the result of a comet or an asteroid colliding with the earth. Others believe that flood volcanism from the Siberian Traps and the associated oxygen loss in the seas was the cause. While others continue to investigate the possibility that thinning levels of atmospheric oxygen caused the eradication of so many species at the time.

But new research findings by University College Dublin scientists published in Science, the journal of the American Association for the Advancement of Science, question the theory of falling oxygen levels as a mechanism for causing the mass extinction events.

To assess the likely atmospheric oxygen levels at the time of the mass extinction events, using purposefully designed walk-in-plant-growth rooms equipped with thermal imaging system and full atmospheric, temperature and humidity control, Dr Claire Belcher and her University College Dublin colleagues spent several months measuring the lower limits of oxygen at which combustion can occur. When the measurements were recorded, they compared their results with the charcoal in the fossil record from ancient times because the charcoal that remains in the fossil record reveals the presence of ancient wildfires which require a sufficient level of oxygen in the air for plants to burn.

“By performing experimental burns using pine wood, moss, matches, paper and a candle at 20°C in varying ranges of oxygen concentrations and comparing these results to the occurrences of fossil charcoal throughout the Mesozoic (250-65 million years ago), we were able to identify that prolonged periods of low oxygen are unlikely to have occurred,” says Dr Claire Belcher from the School of Biology and Environmental Science, University College Dublin, the lead author of the report.

“Low oxygen atmospheres, less than 12%, are considered to be the primary driver of at least two of the ‘big five’ mass-extinction events,” explains Dr Belcher. “But our research findings question that hypothesis and highlight the need for more detailed studies of fossil charcoal across these mass extinction events.”

This is the first time that research to identify the lower limit of atmospheric oxygen under which combustion can occur have been conducted within fully controlled and realistic environments. The six walk-in chambers at University College Dublin, funded by EU Marie Curie, enable the realistic reconstruction of environmental conditions from the past.

Dominic Martella | alfa
Further information:
http://www.ucd.ie

More articles from Earth Sciences:

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

nachricht Artificial Glaciers in Response to Climate Change?
10.08.2018 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

Molecular switch detects metals in the environment

15.08.2018 | Materials Sciences

Seeing on the Quick: New Insights into Active Vision in the Brain

15.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>