Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oil sands pollution comparable to a large power plant

23.02.2012
It takes a lot of energy to extract heavy, viscous and valuable bitumen from Canada's oil sands and refine it into crude oil.

Companies mine some of the sands with multi-story excavators, separate out the bitumen, and process it further to ease the flow of the crude oil down pipelines. About 1.8 million barrels of oil per day in 2010 were produced from the bitumen of the Canadian oil sands - and the production of those fossil fuels requires the burning of fossil fuels.

In the first look at the overall effect of air pollution from the excavation of oil sands, also called tar sands, in Alberta, Canada, scientists used satellites to measure nitrogen dioxide and sulfur dioxide emitted from the industry. In an area 30 kilometers (19 miles) by 50 kilometers (31

miles) around the mines, they found elevated levels of these pollutants.

"For both gasses, the levels are comparable to what satellites see over a large power plant - or for nitrogen dioxide, comparable to what they see over some medium-sized cities," said Chris McLinden, a research scientist with Environment Canada, the country's environmental agency.

"It stands out above what's around it, out in the wilderness, but one thing we wanted to try to do was put it in context."

The independent report on the levels of these airborne pollutants, which can lead to acid rain if they are in high enough concentrations, is a part of Environment Canada's efforts to monitor the environmental impact of the oil sands' surface mines, McLinden said. While some land-based measurements have been taken at particular points by other researchers, and a NASA airplane made another set of localized measurements, no one had calculated the overall extent of the oil sands' air quality impacts including the giant dump trucks, huge refining facilities where the bitumen is processed, and more.

To do that, McLinden and his colleagues turned to satellite data. Several satellites orbiting Earth detect sunlight that passes through the atmosphere and is reflected back up to the space. Based on the patterns of reflected wavelengths, scientists can calculate the concentration of certain gasses - in particular nitrogen dioxide and sulfur dioxide. It's a relatively new way to study pollution over small areas, he said.
The study is published today in Geophysical Research Letters, a publication of the American Geophysical Union.

The scientists found that sulfur dioxide amounts peaked over two of the largest mining operations in the Alberta oil sands, with a peak of 1.2x10^16 molecules per square centimeter.
Nitrogen dioxide concentrations reached about 2.5x10^15 molecules per square centimeter. When researchers looked at the concentrations over the years using older satellite information, they found that the amount of nitrogen dioxide increased about 10 percent each year between 2005 and 2010, keeping pace with the growth of the oil sands industry.

"You'd certainly want to keep monitoring that source if it's increasing at that rate," McLinden said. "There are new mines being put in, they're pulling out more oil."

It's important to examine the overall impact of the excavation and processing from the oil sands, said Isobel Simpson, an atmospheric chemist with the University of California at Irvine. She was not involved in this study, but previously participated in the airplane-based research of air quality over the oil sands.

"There are so few independent studies of oil sands," Simpson said. The new study is something scientists haven't been able to do before-to "see the big picture and the birds-eye view of the impact of emissions from the oil sands industry," she said. She called for broader, future studies that would measure additional pollutants and map their extents. With the oil sands industry expanding, she said, the area needs more monitoring.
Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper in press by clicking on this link:

http://dx.doi.org/10.1029/2011GL050273

Or, you may order a copy of the final paper by emailing your request to Kate Ramsayer at kramsayer@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo.

Title:
"Air quality over the Canadian oil sands: A first assessment using satellite observations"
Authors:
Chris A. McLinden and Vitali E. Fioletov: Environment Canada, Toronto, Canada;
K. F. Boersma: Royal Netherlands Meteorological Institute, De Bilt, The Netherlands and Eindhoven University of Technology, Fluid Dynamics Lab, Eindhoven, Netherlands;

Nickolay A. A. Krotkov: Laboratory for Atmospheric Chemistry and Dynamics, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA;

Chris Sioris: Environment Canada, Toronto, Canada;

Pepijn Veefkind: Eindhoven University of Technology, Fluid Dynamics Lab, Eindhoven, Netherlands and Delft University of Technology, Delft, The Netherlands;

Kai Yang: Laboratory for Atmospheric Chemistry and Dynamics, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, and Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, Maryland, USA.

Contact information for the authors:
Chris McLinden, Telephone: +1 (416) 739-4594, and Email: chris.mclinden@ec.gc.ca

Kate Ramsayer | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column
27.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht An international team including scientists from MARUM discovered ongoing and future tropical diversity decline
26.05.2020 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Joined nano-triangles pave the way to magnetic carbon materials

02.06.2020 | Materials Sciences

DC smart grids for production halls

02.06.2020 | Power and Electrical Engineering

Selectively Reactivating Nerve Cells to Retrieve a Memory

02.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>