Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oil and gas wells as a strong source of greenhouse gases

29.08.2017

New study proves methane leaks around North Sea boreholes

The pictures went around the world. In April 2010, huge amounts of methane gas escaped from a well below the Deepwater Horizon platform in the Gulf of Mexico. This "blow-out" caused an explosion, in which eleven people died.


This is methane gas leakage near a well.

Credit: ROV KIEL6000, GEOMAR.

For several weeks, oil spilled from the damaged well into the ocean. Fortunately, such catastrophic "blow-outs" are rather rare. Continuous discharges of smaller amounts of gas from active or old and abandoned wells occur more frequently.

Scientists from GEOMAR Helmholtz Centre for Ocean Research Kiel and the University of Basel now published new data in the international journal Environmental Science & Technology, indicating that gas migration along the outside of wells could be a much bigger problem than previously assumed.

This type of leakage is currently neither considered by operators nor regulators, but could be just as important as fugitive emissions through damaged wells, which are usually recognized and quickly repaired. "We estimate that gas leakage around boreholes could constitute one of the main sources of methane in the North Sea", says Dr. Lisa Vielstädte from GEOMAR, the first author of the study.

During expeditions to oil and gas fields in the central North Sea in 2012 and 2013, the scientists discovered a number of methane seeps around abandoned wells. Interestingly, the gas originates from shallow gas pockets buried less than 1,000 meters below the seabed.

They are simply penetrated when drilling into the underlying, economically interesting hydrocarbon reservoirs. "These gas pockets usually do not pose a risk to the drilling operation itself. But apparently disturbing the sediment around the well enables the gas to rise to the seafloor", explains Dr. Matthias Haeckel from GEOMAR, who initiated the study.

Seismic data from the subsurface of the North Sea further show that about one third of the boreholes perforated shallow gas pockets and may thus leak methane. "Considering the more than 11,000 wells that have been drilled in the North Sea, this results in a fairly large amount of potential methane sources", states Dr. Vielstädte who is currently based at the Stanford University in California, USA.

According to the team's calculations shallow gas migration along wells may release around 3,000 to 17,000 tonnes of methane from the North Sea seafloor per year. "This would reflect a significant contribution to the North Sea methane budget", emphasizes Dr. Haeckel.

In the ocean, methane is usually degraded by microbes, thereby locally acidifying the seawater. In the North Sea, about half of the wells are located in such shallow water depths that the methane leaking from the seabed can reach the atmosphere, where it is acting as a potent greenhouse gas - much more efficient than carbon dioxide.

"Natural gas, thus methane, is often praised as the fossil fuel that is most suitable for the transition from coal burning towards regenerative energies. However, if drilling for gas leads to such high atmospheric methane emissions, we have to rethink the greenhouse gas budget of natural gas ", summarizes Dr. Haeckel.

In order to better quantify the human impact on the methane budget of the North Sea, Kiel's research vessel POSEIDON will investigate further gas seeps in the vicinity of oil and gas wells in October.

Media Contact

Dr. Andreas Villwock
avillwock@geomar.de

 @geomar_en

http://www.geomar.de  

Dr. Andreas Villwock | EurekAlert!

More articles from Earth Sciences:

nachricht Geochemists measure new composition of Earth’s mantle
17.09.2019 | Westfälische Wilhelms-Universität Münster

nachricht Low sea-ice cover in the Arctic
13.09.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Stroke patients relearning how to walk with peculiar shoe

18.09.2019 | Innovative Products

Statistical inference to mimic the operating manner of highly-experienced crystallographer

18.09.2019 | Physics and Astronomy

Scientists' design discovery doubles conductivity of indium oxide transparent coatings

18.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>