Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oil and gas wells as a strong source of greenhouse gases

29.08.2017

New study proves methane leaks around North Sea boreholes

The pictures went around the world. In April 2010, huge amounts of methane gas escaped from a well below the Deepwater Horizon platform in the Gulf of Mexico. This "blow-out" caused an explosion, in which eleven people died.


This is methane gas leakage near a well.

Credit: ROV KIEL6000, GEOMAR.

For several weeks, oil spilled from the damaged well into the ocean. Fortunately, such catastrophic "blow-outs" are rather rare. Continuous discharges of smaller amounts of gas from active or old and abandoned wells occur more frequently.

Scientists from GEOMAR Helmholtz Centre for Ocean Research Kiel and the University of Basel now published new data in the international journal Environmental Science & Technology, indicating that gas migration along the outside of wells could be a much bigger problem than previously assumed.

This type of leakage is currently neither considered by operators nor regulators, but could be just as important as fugitive emissions through damaged wells, which are usually recognized and quickly repaired. "We estimate that gas leakage around boreholes could constitute one of the main sources of methane in the North Sea", says Dr. Lisa Vielstädte from GEOMAR, the first author of the study.

During expeditions to oil and gas fields in the central North Sea in 2012 and 2013, the scientists discovered a number of methane seeps around abandoned wells. Interestingly, the gas originates from shallow gas pockets buried less than 1,000 meters below the seabed.

They are simply penetrated when drilling into the underlying, economically interesting hydrocarbon reservoirs. "These gas pockets usually do not pose a risk to the drilling operation itself. But apparently disturbing the sediment around the well enables the gas to rise to the seafloor", explains Dr. Matthias Haeckel from GEOMAR, who initiated the study.

Seismic data from the subsurface of the North Sea further show that about one third of the boreholes perforated shallow gas pockets and may thus leak methane. "Considering the more than 11,000 wells that have been drilled in the North Sea, this results in a fairly large amount of potential methane sources", states Dr. Vielstädte who is currently based at the Stanford University in California, USA.

According to the team's calculations shallow gas migration along wells may release around 3,000 to 17,000 tonnes of methane from the North Sea seafloor per year. "This would reflect a significant contribution to the North Sea methane budget", emphasizes Dr. Haeckel.

In the ocean, methane is usually degraded by microbes, thereby locally acidifying the seawater. In the North Sea, about half of the wells are located in such shallow water depths that the methane leaking from the seabed can reach the atmosphere, where it is acting as a potent greenhouse gas - much more efficient than carbon dioxide.

"Natural gas, thus methane, is often praised as the fossil fuel that is most suitable for the transition from coal burning towards regenerative energies. However, if drilling for gas leads to such high atmospheric methane emissions, we have to rethink the greenhouse gas budget of natural gas ", summarizes Dr. Haeckel.

In order to better quantify the human impact on the methane budget of the North Sea, Kiel's research vessel POSEIDON will investigate further gas seeps in the vicinity of oil and gas wells in October.

Media Contact

Dr. Andreas Villwock
avillwock@geomar.de

 @geomar_en

http://www.geomar.de  

Dr. Andreas Villwock | EurekAlert!

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>