Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oceans to get noisier as they become more acidic

30.09.2008
As mounting levels of human-generated carbon dioxide make the oceans warmer and more acidic, the seas will transform in yet another, unexpected way -- sounds will travel farther underwater, a new study concludes. A corresponding increase in background noise in the oceans could affect the behavior of marine mammals, the researchers say.

Conservative projections by the United Nations Intergovernmental Panel on Climate Change (IPCC) suggest that the chemistry of seawater could change by 0.3 pH units by 2050. If so, this intensification of ocean acidity would allow sounds to travel up to 70 percent farther underwater than in today's oceans.

The projected impact on ocean sound emerges from calculations by Keith Hester and his colleagues at the Monterey Bay Aquarium Research Institute (MBARI) in Moss Landing, Calif. The researchers will publish their findings on Wednesday, 1 October 2008, in Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

Ocean chemists have known for decades that the absorption of sound in seawater changes with the chemistry of the water itself. As sound moves through seawater, it causes groups of atoms to vibrate, absorbing sounds at specific frequencies. This involves a variety of chemical interactions that are not completely understood. However, the overall effect is strongly controlled by the acidity of the seawater.

The bottom line is this: the more acidic the seawater, the less low- and mid-frequency sound it absorbs.

Thus, as the oceans become more acidic, sounds will travel farther underwater so the level of underwater sound will rise. According to Hester's calculations, such a change in chemistry will have the greatest effect on sounds below about 3,000 cycles per second (two and one half octaves above "middle C" on a piano).

This range of sounds includes most of the "low frequency" sounds used by marine mammals in finding food and mates. It also includes many of the underwater sounds generated by industrial and military activity, as well as by boats and ships. Such human-generated underwater noise has increased dramatically over the last 50 years, as human activities in the ocean have increased.

The MBARI researchers say that sound already may be traveling 10 percent farther in the oceans than it did a few hundred years ago.

However, they predict that by 2050, under conservative projections of ocean acidification, sounds could travel as much as 70 percent farther in some ocean areas (particularly in the Atlantic Ocean). This could dramatically improve the ability of marine mammals to communicate over long distances. It could also increase the amount of background noise that they have to live with.

There are no long-term records of sound absorption over large ocean areas. However, the researchers cite a study off the coast of California which showed an increase in ocean noise between 1960 and 2000 that was not directly attributable to known factors such as ocean winds or ships.

Hester's research shows how human activities are affecting the Earth in far-reaching and unexpected ways. As the researchers put it in their paper, "The waters in the upper ocean are now undergoing an extraordinary transition in their fundamental chemical state at a rate not seen on Earth for millions of years, and the effects are being felt not only in biological impacts but also on basic geophysical properties, including ocean acoustics."

This research was supported by grants from the David and Lucile Packard Foundation.

Title:
"A noisier ocean at lower pH"
Authors:
Keith C. Hester, Edward T. Peltzer, William J. Kirkwood and Peter G.
Brewer: Monterey Bay Aquarium Research Institute, Moss Landing, California, USA.
Citation:
Hester, K. C., E. T. Peltzer, W. J. Kirkwood, and P. G. Brewer (2008), Unanticipated consequences of ocean acidification: A noisier ocean at lower pH, Geophys. Res. Lett., 35, L19601, doi:10.1029/2008GL034913.
Contact information for coauthors:
Keith Hester, Postdoctoral Fellow, phone: +1 (831) 775-2072, email:
khester@mbari.org

Peter Brewer, Senior Scientist, phone: +1 (831) 775-1706, email:
brpe@mbari.org

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Live from the ocean research vessel Atlantis
13.12.2018 | National Science Foundation

nachricht NSF-supported scientists present new research results on Earth's critical zone
13.12.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>