Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Ocean Currents Affect Global Climate Becoming Better Understood

28.08.2012
A NEW WAY OF THINKING ABOUT OCEAN CURRENTS: OCEANOGRAPHY PROFESSOR LOOKS TO THE SOUTH FOR ANSWERS

Florida State University oceanographer Kevin Speer has a “new paradigm” for describing how the world’s oceans circulate — and with it he may help reshape science’s understanding of the processes by which wind, water, sunlight and other factors interact and influence the planet’s climate.

A Florida State University professor of oceanography with a passion for teaching, Speer and a colleague recently published a significant paper in the respected journal Nature Geoscience.

Working with John Marshall, an oceanography professor at the Massachusetts Institute of Technology, Speer reviewed — or essentially synthesized — vast amounts of previous data on ocean circulation (including their own earlier papers). As a result, they have created what Speer calls a new paradigm in the study of ocean currents on a global scale.

Here’s how it works: Basically, the oceans, together with the atmosphere, rebalance heat on the planet. The sun shines on the Earth and heats up the tropics more than the poles. Near the poles, the ocean is cold and the water sinks; near the equator, the surface of the ocean is inviting and warm — and floats on top of the colder deep water.

So the question is this: Where does the water that goes down come back up?

Speer, Marshall and other oceanographers now believe that it comes back up in the Southern Ocean surrounding Antarctica — not as much in the warm oceans as had been previously thought.

“We’re not saying that nothing comes up in the rest of the World Ocean, just that the main thrust is in the Southern Ocean,” Speer said. “To a large extent it’s driven by the wind.”

Very strong winds, to be precise.

In the rough waters around Antarctica, sailors call those winds the “Roaring Forties” and the “Furious Fifties.” They originate near the Equator, where hot air rises and then is pushed toward the North and South poles by cooler air that rushes in to take its place.

The resulting “eddy-driven upwelling” in the Southern Ocean, as Speer characterizes it, may in fact describe the most important process to date that helps scientists understand the role of the ocean and climate.

Speer, who holds a doctorate in physical oceanography from the prestigious Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program, spent years living in France as an oceanographic researcher for a French governmental agency. (Yes, he’s fluent in French.)

Today, from his office on the Florida State campus, Speer serves as interim director of the Geophysical Fluid Dynamics Institute, a warren of intriguing laboratories just a few steps outside his door. It is there that Speer helps students and postdoctoral researchers learn about how climate works.

The laboratory’s equipment includes a large, vintage rotating table designed nearly a half-century ago by the lab’s founder, Florida State meteorology Professor Richard Pfeffer. (The device may be old, but it’s one of the biggest and best in the United States, Speer says). Here students can recreate the ocean’s churning and study natural phenomena such as the Antarctic circumpolar current.

Speer and his students have been studying ocean currents thanks to $2.5 million in funding from a larger $10 million National Science Foundation grant that FSU shares with eight other universities and institutions worldwide. Research has included releasing tracers and floats into the ocean to study the mixing and spreading of currents.

One of Speer’s graduate students, Druv Balwada, recently took part in a joint U.S.-United Kingdom research program to study ocean currents aboard a ship in the Southern Ocean. To view the cruise blog of the nearly three-month voyage, visit http://dimesuk3.blogspot.com/.

“Our students learn and help in various ways,” Speer said. “They certainly help generate some interesting and lively oceanographic research.

Speer and Marshall’s Nature Geoscience paper is titled “Closure of the Meridional Overturning Circulation Through Southern Ocean Upwelling.”

Professor Kevin Speer
Department of Earth, Ocean and Atmospheric Science, Florida State University
(850) 644-5594; kspeer@fsu.edu

Professor Kevin Speer | Newswise Science News
Further information:
http://www.fsu.edu

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>