Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk

15.12.2017

Sunset on the Sabrina Coast, East Antarctica

The East Antarctic Ice Sheet locks away enough water to raise sea level an estimated 53 meters (174 feet), more than any other ice sheet on the planet. It's also thought to be among the most stable, not gaining or losing mass even as ice sheets in West Antarctica and Greenland shrink.


Sunset on the Sabrina Coast, East Antarctica.

Credit: Steffen Saustraup, University of Texas Institute for Geophysics

But new research, led by The University of Texas at Austin and the University of South Florida (USF) and funded by the National Science Foundation (NSF), found that the East Antarctic Ice Sheet may not be as stable as it seems.

In fact, the ice sheet has a long history of expanding and shrinking -- a finding that indicates the ice sheet may contribute substantially to global sea-level rise as Earth's climate warms. The new results came from geophysical and geologic data collected during the first-ever oceanographic survey of East Antarctica's Sabrina Coast. The glaciers in this region may be particularly susceptible to climate change because they flow from the Aurora Basin, a region of East Antarctica that lies mostly below sea level.

Co-lead author Sean Gulick, a research professor at the University of Texas Institute for Geophysics (UTIG) and the university's Department of Geological Sciences, said the study found that glaciers from the Aurora Basin have been stable for only the last few million years.

"It turns out that for much of the East Antarctic Ice Sheet's history, it was not, as commonly perceived, a large, stable ice sheet that underwent only minor changes in size over millions of years," he said. "Rather, we have evidence for a very dynamic ice sheet that grew and shrank significantly between glacial and interglacial periods. There were also frequent long intervals of open water along the Sabrina Coast, with limited glacial influence."

NSF's Office of Polar Programs (OPP) manages the United States Antarctic Program and provided the funding and logistical support that made field research to the Sabrina Coast possible.

"The past behavior and dynamics of the Antarctic ice sheets are among the most important open questions in the scientific understanding of how the polar regions help to regulate global climate," said Jennifer Burns, director of OPP's Antarctic Integrated Science System Program. "This research provides an important piece to help solve that massive puzzle."

The findings were published on Dec. 14 in the journal Nature. Collaborators include researchers at Louisiana State University (LSU), the University of Southampton, Florida State University and Colgate University.

Using marine seismic technology deployed from an ice breaker, researchers were able to reconstruct how glaciers on the Sabrina Coast have advanced and retreated over the past 50 million years. The team also took core samples of mud from 1 to 2 meters below the seafloor and analyzed ancient pollen to determine the age of the samples. The analysis was conducted at LSU's Center for Excellence in Palynology.

The Sabrina Coast and nearby Aurora Basin are particularly important because regional glaciers are now thinning and retreating as nearby ocean waters warm. If the ice sheet in the Aurora Basin melted, global sea levels would rise more than 3-5 meters (10-15 feet).

According to the team's data, ice advanced from the Aurora Basin and retreated again at least 11 times over the first 20 million years of the ice sheet's history. Researchers also found that the young ice sheet was much wetter than it is today, with meltwater from the surface flowing into a network of channels beneath the ice. These channels were eroded into the rock below the ice, leaving distinctive formations known as "tunnel valleys." This dynamic time for East Antarctic glaciers occurred when atmospheric temperatures and atmospheric carbon dioxide levels were similar to or higher than present day levels.

"We shouldn't view this as one ice sheet that suddenly grew to its present size, but rather as one that was a transient ice sheet that expanded every couple million years or so," Gulick said.

Around 6 million years ago, the East Antarctic Ice Sheet expanded, stabilized and ceased producing large volumes of meltwater. However, as climate change raises global air temperatures, it is possible that East Antarctic glaciers could start melting, a change that could make the ice sheet shift back into unstable territory.

The warm ocean water now melting Totten Glacier -- East Antarctica's largest glacier, which flows from the Aurora Basin -- could be an early warning sign, said co-lead author Amelia Shevenell, an associate professor in USF's College of Marine Science.

"A lot of what we are seeing right now in the coastal regions is that warming ocean waters are melting Antarctica's glaciers and ice shelves, but this process may just be the beginning," Shevenell said. "Once you have that combination of ocean heat and atmospheric heat -- which are related -- that's when the ice sheet could really experience dramatic ice mass loss."

Media Contact

Peter West
pwest@nsf.gov

 @NSF

http://www.nsf.gov 

Peter West | EurekAlert!

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>