Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel method for investigating pore geometry in rocks

18.06.2018

Based on persistent homology theory, researchers from Japan's Kyushu University presented a new parameter and a new method for evaluating the heterogeneity of porosity

Whether or not we realize it, mathematics permeates our lives in countless ways. Sometimes, the role of mathematics is difficult to grasp, but other times it's rock solid.


Figure: Left: This is a digitalized 3D natural rock, Center: Spheres cloud representing pore topological features, Right: Persistence diagram.

Credit: International Institute for Carbon-Neutral Energy Research (I2CNER) / Institute of Mathematics for Industry (IMI), Kyushu University

Although the mineral grains that form a rock are important, it is the pores--the empty spaces between those grains--that often carry vital resources such as oil, gas, and drinking water.

The geometry of pores can strongly affect the storage, flow, and extraction of those resources. Thus, improving understanding of pore geometry is of great interest to many researchers and industry professionals.

In a fusion of mathematics and earth science, researchers from the International Institute for Carbon-Neutral Energy Research (I2CNER) and the Institute of Mathematics for Industry (IMI) of Kyushu University have now developed an innovative method to characterize pore geometry, based on a concept called persistent homology theory, as reported in a study published in Water Resources Research.

An important difference between natural rocks and artificial media is that the physical characteristics of rock tend to be relatively heterogeneous. This state-of-the-art method is particularly useful for characterizing that heterogeneity in pores.

As study first author Fei Jiang explains, "In the proposed method, complex pore geometry is first transformed into sphere cloud data. Then, a persistence diagram is calculated from the point cloud. A new parameter, the distance index H as a metric, is derived from the persistence diagram, and is proposed to characterize the degree of rock heterogeneity."

A strong relationship was confirmed between heterogeneity and the distance index H. In addition, a new empirical equation using this metric H is proposed to predict the effective elastic modulus of rocks.

"To test the newly proposed method based on the geometry of real rocks, four types of rock with different pore structures, including two carbonates and two sandstones, were investigated," co-author Takeshi Tsuji explains. "Persistence diagram analysis was more effective for quantitatively estimating the heterogeneity of relatively homogeneous sandstone compared with the conventional method. This new method was also superior in terms of distinguishing the different rock types."

Additional advantages of this method of analysis are that the persistence diagram is relatively stable with small changes in pore space, and the distance index H can be calculated very efficiently. Information extracted from persistence diagram analysis can be used to directly predict physical properties (such as permeability and elasticity) based on the microstructures of rocks. Thus, persistence diagram analysis may prove to be an important new tool for understanding the heterogeneity of pores in different rock types.

###

The article, "Pore Geometry Characterization by Persistent Homology Theory" was published in Water Resources Research at DOI: 10.1029/2017WR021864.

Media Contact

Akiko Uematsu, Public Relations Group, WPI-I2CNER
wpisyogai@jimu.kyushu-u.ac.jp
81-928-026-935

http://i2cner.kyushu-u.ac.jp/en/ 

Akiko Uematsu, Public Relations Group, WPI-I2CNER | EurekAlert!
Further information:
http://dx.doi.org/10.1029/2017WR021864

More articles from Earth Sciences:

nachricht Turbulence creates ice in clouds
08.11.2019 | Leibniz-Institut für Troposphärenforschung e. V.

nachricht Manganese nodules: project on environmental impact during deep sea mining
08.11.2019 | Jacobs University Bremen gGmbH

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

Im Focus: Visible light and nanoparticle catalysts produce desirable bioactive molecules

Simple photochemical method takes advantage of quantum mechanics

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Using mountains for long-term energy storage

12.11.2019 | Power and Electrical Engineering

“KaSiLi”: Better batteries for electric cars “Made in Germany”

12.11.2019 | Power and Electrical Engineering

How the Zika virus can spread

11.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>