Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NOAA-Supported Scientists Predict “Larger Than Average” Gulf Dead Zone

01.07.2010
The northern Gulf of Mexico hypoxic zone, an underwater area with little or no oxygen known commonly as the “dead zone,” could be larger than the recent average, according to a forecast by a team of NOAA-supported scientists from the Louisiana Universities Marine Consortium, Louisiana State University, and the University of Michigan.

Scientists are predicting the area could measure between 6,500 and 7,800 square miles, or an area roughly the size of the state of New Jersey. The average of the past five years is approximately 6,000 square miles. It is the goal of a federal state task force to reduce it to 1,900 square miles. The largest dead zone on record, 8,484 square miles, occurred in 2002.

This forecast is based on Mississippi River nutrient flows compiled annually by the U.S. Geological Survey. Dead zones off the coast of Louisiana and Texas are caused by nutrient runoff, principally from agricultural activity, which stimulates an overgrowth of algae that sinks, decomposes, and consumes most of the life-giving oxygen supply in the water. It is unclear what impact, if any, the BP Deepwater Horizon oil spill will have on the size of the dead zone.

“The oil spill could enhance the size of the hypoxic zone through the microbial breakdown of oil, which consumes oxygen, but the oil could also limit the growth of the hypoxia-fueling algae,” said R. Eugene Turner, Ph.D., professor of oceanography at Louisiana State University. “It is clear, however, that the combination of the hypoxic zone and the oil spill is not good for local fisheries.”

Hypoxia is of particular concern because it threatens valuable commercial and recreational Gulf fisheries. In 2008, the dockside value of commercial fisheries was $659 million. The 24 million fishing trips taken in 2008 by more than three million recreational fishers further contributed well over a billion dollars to the Gulf economy.

“As with weather forecasts, this prediction uses multiple models to predict the range of the expected size of the dead zone,” said Robert Magnien, Ph.D., director of NOAA’s Center for Sponsored Coastal Ocean Research. “The strong track record of these models reinforces our confidence in the link between excess nutrients from the Mississippi River and the dead zone.”

“The 2010 spring nutrient load transported to the northern Gulf of Mexico is about 11 percent less than the average over the last 30 years,” said Matthew Larsen, Ph.D., USGS associate director for water. “An estimated 118,000 metric tons of nitrogen in the form of nitrate were transported in May 2010 to the northern Gulf.”

The collaboration among NOAA, USGS, and University scientists facilitates understanding of the linkages between activities in the Mississippi River watershed and the downstream effects on the northern Gulf of Mexico. Long-term data sets on nutrient loads and the extent of the hypoxic zone have improved forecast models used by management agencies to understand the nutrient reductions required to reduce the size of the hypoxic zone to the established goal. This year’s forecast is an example of NOAA’s growing ecological forecasting capabilities that allow for the protection of valuable resources using scientific, ecosystem-based approaches.

An announcement of the size of the 2010 hypoxic zone, which is an annual requirement of the Gulf of Mexico Hypoxia Task Force Action Plan, will follow a NOAA-supported monitoring survey led by the Louisiana Universities Marine Consortium between July 24 and August 2. Information on the extent of hypoxia will also be available on the NOAA’s Gulf of Mexico Hypoxia Watch Web page, which displays near real-time results of the NOAA Fisheries Service summer fish survey in the northern Gulf of Mexico currently underway and scheduled to be completed by July 18.

NOAA’s mission is to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources. Visit us on Facebook.

Ben Sherman | EurekAlert!
Further information:
http://www.noaa.gov

Further reports about: Gulf of Maine region Hypoxia Marine science Mississippi NOAA River USGS dead zone oil spill

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>