New ways for understanding the link between the uplift of the Tibetan Plateau and species diversity

“We believe this paper may become a benchmark for geo-biological studies worldwide. It links the geological, climatic and evolutionary history of one of the most fascinating and biodiverse regions of the world, and builds up a promising framework for more hypothesis-driven and synthetic research”, says Prof. Alexandra Muellner-Riehl, from the Department of Molecular Evolution and Systematics of Plants in Leipzig. She heads the DFG Research Cluster and is also member of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig.

Muellner-Riehl and her collaborators found that the link between diversity, speciation and the geological processes was still poorly understood. They identified two main reasons for this: different authors tend to use a different geological framework in their studies, and they apply different analytical approaches and data that are poorly comparable.

The authors show three ways how our understanding of the link between uplift processes of the Qinghai-Tibetan Plateau and the Himalayas and species diversity can be improved:

1) They provide a state-of-the-art scenario how the uplift occurred and how this influenced regional climates over the last 40 million years; this will allow future researchers to formulate clear and comparable hypotheses.

2) They summarize recent analytical developments that allow scientists to make the link between geology and diversification more quantitative and less ad hoc.

3) They propose using meta-analyses of many comparable data sets to help researchers gain a broader understanding of species diversity in the region.

“It is very likely that the uplift of the Qinghai-Tibetan Plateau had different impacts on the evolution of different taxa”, lead author Dr. Adrien Favre, Department of Molecular Evolution and Systematics of Plants, University of Leipzig, Germany, points out. “We wanted to provide details on the criteria that individual data sets should meet to guide future research”, adds co-author Dr. Steffen Pauls, Biodiversity and Climate Research Centre (BiK-F).

This research is presented in the paper “The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas” to appear in Biological Reviews (DOI 10.1111/brv.12107). The scientific article is available online (open access), free of charge: http://onlinelibrary.wiley.com/doi/10.1111/brv.12107/full

The team is composed of Adrien Favre 1,2, Martin Päckert 2,3, Steffen U. Pauls 2, Sonja C. Jähnig 2,4, Dieter Uhl 5, Ingo Michalak 1 and Alexandra N. Muellner-Riehl 1,2,6

1 Department of Molecular Evolution and Systematics of Plants, University of Leipzig, Germany
2 Biodiversity and Climate Research Centre (BiK-F) & Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
3 Senckenberg Natural History Collections, Museum für Tierkunde, Dresden, Germany
4 Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
5 Section of Palaeoclimate and Palaeoenvironmental Research, Senckenberg Research Institute and Natural History Museum, Frankfurt, Germany
6 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena Leipzig, Germany

For more information please contact

Prof. Dr. Alexandra Muellner-Riehl
Department of Molecular Evolution and Systematics of Plants,
Institute of Biology, Leipzig University
Tel. +49-(0)341 97-38581
Muellner-riehl@uni-leipzig.de

or

Dr. Steffen Pauls
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Tel. +49 (0)69 7542 1841
Steffen.pauls@senckenberg.de

or

Sabine Wendler
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Press officer
Tel. +49 (0)69 7542 1838
Sabine.wendler@senckenberg.de

http://www.bik-f.de/root/index.php?page_id=267&year=0&ID=693
http://- Press release and more press images
http://www.bik-f.de
http://- LOEWE Biodiversity and Climate Research Centre

Media Contact

Sabine Wendler Senckenberg

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors