Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology measures small-scale currents that transport ocean plastics, oil spills

08.05.2017

UM Rosenstiel School-led study provides new remote technique to aid in disaster response

Researchers at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science have developed a new technology to measure the currents near the ocean's surface that carry pollutants such as plastics and spilled oil.


Figure adapted from Fig. 9 of paper. Comparison of currents estimated via camera tracking of dye (yellow for surface, violet for sub-surface) and through extraction from short wave spectra (green and blue represent two different depth assignment schemes, as described in paper). Brown 'oil' on right side is for reference only, representing the typical 1 micron -- 2 centimeter range of surface oil thickness.

Credit: N.J.M Laxague

This new technique, which includes a specialized video camera to remotely sense currents in the upper few centimeters of the water column, can help scientists more accurately predict the fate of spilled oil or other marine pollutants that are transported at the surface layer by providing these measurements that were previously unattainable.

"The health and economic impacts of spilled oil and marine debris have the potential to be profoundly negative," said UM Rosenstiel School postdoctoral researcher Nathan Laxague, and lead author of the study. "Improving our ability to measure near-surface ocean currents can aid in disaster response and provides for greater context in understanding the dynamics of marine pollutant transport."

... more about:
»Atmospheric »Marine »pollutants »spilled oil »spills

Laxague and colleagues conducted two experiments -- one in a laboratory and one in the field at the mouth of the Columbia River--to test their new technique. In the laboratory study, the researchers imaged the water surface in the SUSTAIN (SUrge-STructure Atmosphere INteraction) facility using a specialized camera that simultaneously records three polarizations of reflected light off the ocean surface to determine the current profile for a range of wind speeds. In the field study, a research vessel was stationed in the mouth of the Columbia River along the Oregon-Washington border to verify the results from the lab experiment in a real-world setting.

The data gathered from the experiments showed that the innovative optical technique is ideal to measure currents within the first few centimeters at the ocean's surface.

"This slice of the water column is important because it is where oil, larvae and other drifting floating objects are, and yet, until now, scientists had no good way to measure it using existing technologies," said UM Rosenstiel School Ocean Science Professor Brian Haus, a co-author of the study.

The study was conducted as a part of the CARTHE (Consortium for Advanced Research on Transport of Hydrocarbon in the Environment) and RIVET (RIVerine and Estuarine Transport) projects. Based at the UM Rosenstiel School, CARTHE, is a research team dedicated to predicting the fate of the oil released into our environment as a result of future oil spills.

The paper, titled "Passive optical sensing of the near-surface, wind-driven current profile," appears in the Journal of Atmospheric and Oceanic Technology in its online pre-print version. The study's authors include: Laxague, Haus, David Ortiz-Suslow, Conor Smith, Guillaume Novelli, Hanjing Dai, Tamay Özgökmen, and Hans Graber from the UM Rosenstiel School Department of Ocean Sciences.

###

The Gulf of Mexico Research Initiative (grant #SA1207GOMRI005) and the Office of Naval Research (grant #N000141410643) provided funding for the study.

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Media Contact

Diana UDel
dudel@rsmas.miami.edu
305-421-4704

 @UMiamiRSMAS

http://www.rsmas.miami.edu 

 

Diana UDel | EurekAlert!

Further reports about: Atmospheric Marine pollutants spilled oil spills

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>