Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New studies increase confidence in NASA's measure of Earth's temperature

24.05.2019

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values are likely accurate to within 0.09 degrees Fahrenheit (0.05 degrees Celsius) in recent decades, and 0.27 degrees Fahrenheit (0.15 degrees C) at the beginning of the nearly 140-year record.


The years 2014-2018, averaged on this map, were the warmest years in the modern record compared to GISTEMP's 1951-1980 baseline. The areas in red experienced warmer than normal temperatures, while the areas in blue were cooler than normal during this period.

Credit: NASA

This data record, maintained by NASA's Goddard Institute for Space Studies (GISS) in New York City, is one of a handful kept by major science institutions around the world that track Earth's temperature and how it has risen in recent decades.

This global temperature record has provided one of the most direct benchmarks of how our home planet's climate has changed as greenhouse gas concentrations rise.

The study also confirms what researchers have been saying for some time now: that Earth's global temperature increase since 1880 - about 2 degrees Fahrenheit, or a little more than 1 degree Celsius - cannot be explained by any uncertainty or error in the data. Going forward, this assessment will give scientists the tools to explain their results with greater confidence.

GISTEMP is a widely used index of global mean surface temperature anomaly -- it shows how much warmer or cooler than normal Earth's surface is in a given year. "Normal" is defined as the average during a baseline period of 1951-80.

NASA uses GISTEMP in its annual global temperature update, in partnership with the National Oceanic and Atmospheric Administration. (In 2019, NASA and NOAA found that 2018 was the fourth-warmest year on record, with 2016 holding the top spot.)

The index includes land and sea surface temperature data back to 1880, and today incorporates measurements from 6,300 weather stations, research stations, ships and buoys around the world.

Previously, GISTEMP provided an estimate of uncertainty accounting for the spatial gaps between weather stations. Like other surface temperature records, GISTEMP estimates the temperatures between weather stations using data from the closest stations, a process called interpolation. Quantifying the statistical uncertainty present in those estimates helped researchers to be confident that the interpolation was accurate.

"Uncertainty is important to understand because we know that in the real world we don't know everything perfectly," said Gavin Schmidt, director of GISS and a co-author on the study. "All science is based on knowing the limitations of the numbers that you come up with, and those uncertainties can determine whether what you're seeing is a shift or a change that is actually important."

The study found that individual and systematic changes in measuring temperature over time were the most significant source of uncertainty. Also contributing was the degree of weather station coverage. Data interpolation between stations contributed some uncertainty, as did the process of standardizing data that was collected with different methods at different points in history.

After adding these components together, GISTEMP's uncertainty value in recent years was still less than a tenth of a degree Fahrenheit, which is "very small," Schmidt said.

The team used the updated model to reaffirm that 2016 was very probably the warmest year in the record, with an 86.2 percent likelihood. The next most likely candidate for warmest year on record was 2017, with a 12.5 percent probability.

"We've made the uncertainty quantification more rigorous, and the conclusion to come out of the study was that we can have confidence in the accuracy of our global temperature series," said lead author Nathan Lenssen, a doctoral student at Columbia University. "We don't have to restate any conclusions based on this analysis."

Another recent study evaluated GISTEMP in a different way that also added confidence to its estimate of long-term warming. A paper published in March 2019, led by Joel Susskind of NASA's Goddard Space Flight Center, compared GISTEMP data with that of the Atmospheric Infrared Sounder (AIRS), onboard NASA's Aqua satellite.

GISTEMP uses air temperature recorded with thermometers slightly above the ground or sea, while AIRS uses infrared sensing to measure the temperature right at the Earth's surface (or "skin temperature") from space. The AIRS record of temperature change since 2003 (which begins when Aqua launched) closely matched the GISTEMP record.

Comparing two measurements that were similar but recorded in very different ways ensured that they were independent of each other, Schmidt said. One difference was that AIRS showed more warming in the northernmost latitudes.

"The Arctic is one of the places we already detected was warming the most. The AIRS data suggests that it's warming even faster than we thought," said Schmidt, who was also a co-author on the Susskind paper.

Taken together, Schmidt said, the two studies help establish GISTEMP as a reliable index for current and future climate research.

"Each of those is a way in which you can try and provide evidence that what you're doing is real," Schmidt said. "We're testing the robustness of the method itself, the robustness of the assumptions, and of the final result against a totally independent data set."

In all cases, he said, the resulting trends are more robust than what can be accounted for by any uncertainty in the data or methods.

Patrick Lynch | EurekAlert!
Further information:
https://www.nasa.gov/feature/goddard/2019/gistemp-warming-trends-greater-than-data-uncertain

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Immortal quantum particles: the cycle of decay and rebirth

14.06.2019 | Physics and Astronomy

Exciting Plant Vacuoles

14.06.2019 | Life Sciences

Rigid bonds enable new data storage technology

14.06.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>