Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New source of global nitrogen discovered: Earth's bedrock

10.04.2018

Nitrogen from bedrock can result in side-by-side productive forests and barren acidic areas

For centuries, the thinking has been that all the nitrogen available for plant growth worldwide comes from the atmosphere. But a new study by National Science Foundation (NSF)-funded researchers at the University of California (UC), Davis, shows that more than a quarter of that nitrogen is derived from the weathering of Earth's bedrock.


These are sedimentary rocks of the Grand Canyon. This rock type contains high levels of nitrogen.

Credit: Scott Morford

The results, published this week in the journal Science, demonstrate that up to 26 percent of the nitrogen in ecosystems is sourced from rocks, with the remaining amount from the atmosphere.

"This research reveals important connections among the atmosphere, the biosphere, and the rocks at Earth's surface," said Richard Yuretich, a program director in NSF's Division of Earth Sciences, which funded the study.

The findings show that rock weathering is a globally significant source of nitrogen to soils and ecosystems, according to co-author and team leader Ben Houlton of UC Davis. "That runs counter to the centuries-long paradigm that has laid the foundation for the environmental sciences," said Houlton.

Geology and carbon sequestration

Rock-derived nitrogen may fuel the growth of forests and grasslands, and allow them to sequester more carbon dioxide than previously thought. Mapping the nutrient profiles in rocks for their carbon uptake potential could help drive conservation efforts, the researchers said.

"Geology might have a huge control over which systems can take up carbon dioxide and which ones can't," Houlton said. "When thinking about carbon sequestration, the geology of the planet can help guide our decisions."

Mysterious gap

The work also helps solve the "case of the missing nitrogen." For decades, scientists have recognized that more nitrogen accumulates in soils and plants than can be explained by input from the atmosphere alone, but researchers couldn't pinpoint what was missing.

"We show that the paradox of nitrogen is literally 'written in stone,'" said co-author Scott Morford of UC Davis. "There's enough nitrogen in rocks, and it breaks down fast enough, to explain the cases where there has been this mysterious gap."

In previous work, Houlton and Morford analyzed rocks collected from the Klamath Mountains in northern California, and found that the rocks and the surrounding trees contained large amounts of nitrogen.

In the current study, they built on that work, analyzing the entire planet's nitrogen balance; the scientists developed a model to assess rock nitrogen availability on a global scale.

Rewriting textbooks

"These results are going to require rewriting textbooks," said Kendra McLauchlan, a program director in NSF's Division of Environmental Biology, which co-funded the research. "While there were hints that plants could use rock-derived nitrogen, this discovery shatters the paradigm that the ultimate source of nitrogen is the atmosphere. A discovery of this magnitude will open up a new era of research on this essential nutrient."

###

UC Davis scientist Randy Dahlgren also co-authored the study.

The research was co-funded by the Andrew W. Mellon Foundation.

Media Contact

Cheryl Dybas
cdybas@nsf.gov

 @NSF

http://www.nsf.gov

Cheryl Dybas | EurekAlert!

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>