Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New forecasting method: Predicting extreme floods in the Andes mountains

14.10.2014

Predicting floods following extreme rainfall in the central Andes is enabled by a new method. Climate change has made these events more frequent and more severe in recent decades.

Now complex networks analysis of satellite weather data makes it possible to produce a robust warning system for the first time, as a study to be published in the journal Nature Communications shows.

This might allow for improved disaster preparedness. As the complex systems technique builds upon a mathematical comparison that can be utilised for any time series data, the approach could be applied to extreme events in all sorts of complex systems.

“Current weather forecast models cannot capture the intensity of the most extreme rainfall events, yet these events are of course the most dangerous , and can have severe impacts for the local population, for example major floods or even landslides,” says lead author Niklas Boers of the Potsdam Institute for Climate Impact Research (PIK). “Using complex networks analysis, we now found a way to predict such events in the South American Andes.”

When the monsoon hits South America from December to February, it brings moist warm air masses from the tropical Atlantic. Travelling westwards, these winds are blocked by the steep Andes mountains, several thousand metres high, and turn southwards.

Under specific air pressure conditions, the warm air masses, loaded with moisture, meet cold and dry winds approaching from the south. This leads to abundant rainfall at high elevations, resulting in floods in the densely populated foothills of the Bolivian and Argentinian Andes. “Surprisingly, and in contrast to widespread understanding so far, these events propagate against the southward wind direction,” says Boers.

‘Big Data’ analysis of observational time series from satellites

The international team of scientists performed a ‘Big Data’ analysis of close to 50,000 high-resolution weather data time series dating from the 15 years since high quality satellite data became available, generated by NASA together with the Japan Aerospace Exploration Agency.

“We found that these huge rainfall clusters start off in the area around Buenos Aires, but then wander northwestward towards the Andes, where after two days they cause extreme rainfall events”, says Boers. The new method makes it possible to correctly predict 90 percent of extreme rainfall events in the Central Andes occurring during conditions of the El Niño weather phenomenon when floods are generally more frequent, and 60 percent of those occurring under any other conditions.

“While the findings were hard to derive, local institutions can now apply them quite easily by using readily available data, which helps a lot,” says co-author José A. Marengo of the National Institute for Space Research in Sao Paulo, Brazil. “Major rainfall events can result in floods which for instance in early 2007 alone produced estimated costs of more than 400 million US dollars. It is now up to the affected countries to adapt their disaster preparation planning.”

Method can be applied to the climate, but also to financial markets

“Comparing weather data sounds simple enough, but it actually took the new mathematical tool that we developed to detect the intricate connections that lead to the extremes,” says co-author Jürgen Kurths, co-chair of PIK’s research domain Transdisciplinary Concepts and Methods. “The data was there, but nobody joined the dots like this before. The method provides a general framework that could now be applied to forecast extreme changes in time series of other complex systems,” says Kurths. “In fact, this could be financial markets, brain activity, or even earthquakes.”

Article: Boers, N., Bookhagen, B., Barbosa, H.M.J., Kurths, J., Marengo, J.A. (2014): Prediction of extreme floods in the eastern central Andes based on a complex networks approach. Nature Communications (online) [DOI: 10.1038/ncomms6199]

Weblink to the article once it is published: http://www.nature.com/naturecommunications

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Weitere Informationen:

http://www.nature.com/naturecommunications - Weblink to the article once it is published

Jonas Viering | PIK Potsdam
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>