Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nea Kameni volcano movement captured by Envisat

23.05.2012
Archived data from the Envisat satellite show that the volcanic island of Santorini has recently displayed signs of unrest. Even after the end of its mission, Envisat information continues to be exploited for the long-term monitoring of volcanoes.
Santorini is a picturesque Greek island in the south Aegean Sea and the most active volcanic centre in the South Aegean Volcanic Arc.
The island is the site of one of history’s largest volcanic eruptions, about 3600 years ago. The geological record over the past million years reveals an extensive history of eruptions, with the most recent occurring in 1950.

But despite being dormant for over half a century, satellites have detected slight movements.

These and other findings were presented at the International Forum on Satellite Earth Observation for Geohazard Risk Management, currently under way in Santorini itself.

Organised by ESA in partnership with the Group on Earth Observations (GEO), the forum is focusing on the science and applications of satellite Earth observation to support the management of risks associated with geophysical hazards.

Seismic activity in Santorini, such as the underground movement of magma, from January 2011 to today has caused ground deformation that was detected by Envisat’s radar.

Even from an orbit about 800 km above the ground, deformations of a few centimetres can be detected by satellite radars.

When two or more radar images of the same area are combined, changes in signal reflections between them can be measured. This technique called Differential Interferometric Synthetic Aperture Radar – or DInSAR – has become a useful tool for detecting ground deformation.

Envisat shows that the northeastern part of Santorini’s Nea Kameni volcano experienced an uplift of about 5 cm in 2011, while other areas of the volcano rose some 3–4 cm.

"Monitoring to detect any change of the status of the volcano presents a further step towards the understanding of physical processes related to volcanic eruptions that can lead to natural disasters," said Prof. Issaak Parcharidis from the Department of Geography at the Harokopio University of Athens.

During the first months of this year, Santorini saw a drop in the speed of deformation, accompanied by a reduction in seismic activity.

"After evaluation of local seismic activity, deformation and physicochemical changes, [we] concluded that during the last months the volcano presents a very limited activity, much lower than that of 2011," said Prof. Kosmas Stylianidis, Head of the Special Scientific Committee for the Monitoring of Santorini Volcano.

"The Committee, in its monthly report of April to the government, advises the application of no restrictive measure concerning the mobility of population."

Contact with Envisat was lost on 8 April, but ten years of archived data from the mission will continue to be used by scientists for monitoring volcanoes and many other studies.

The continuation of observation from coming satellite missions, such as the family of Sentinels under Europe’s Global Monitoring for Environment and Security programme, is crucial for ensuring data flow to scientists and operational users dealing with hazard and risk assessment.

Robert Meisner | EurekAlert!
Further information:
http://www.esa.int/SPECIALS/Envisat/SEMEQUYWD2H_0.html

More articles from Earth Sciences:

nachricht Do ice cores help to unravel the clouds of climate history?
21.06.2019 | Leibniz Institute for Tropospheric Research (TROPOS)

nachricht News from the diamond nursery
21.06.2019 | Goethe-Universität Frankfurt am Main

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>