Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sees Heavy Rainfall as Typhoon Rumbia Heads for Landfall in China

02.07.2013
Typhoon Rumbia developed from a low pressure area east of the Philippines and crossed the country from east to west before moving into the South China Sea. NASA’s TRMM satellite flew over Rumbia as it nears southeastern China and identified areas of heavy rainfall in the southern quadrant of the storm.

On Sunday, June 30, NASA infrared satellite imagery revealed tightly curved bands of thunderstorms over the southern quadrant of the storm were wrapping into the northern quadrant of the low-level center. However, in the northwestern quadrant, the quadrant that will make landfall first, there was a lack of strong convection and thunderstorms. Those satellite observations held true 24 hours later.


NASA’s TRMM satellite flew over Rumbia on July 1 at 12:12 a.m. EDT and noticed some areas of heavy rainfall (red) in bands of thunderstorms south of the center. Heavy rainfall was falling at rates of over 2 inches/50 mm per hour. Strong band of thunderstorms continued.
Image Credit: SSAI/NASA, Hal Pierce

Typhoon Rumbia was located east of Hainan Island, China in South China Sea early on July 1. It is headed for landfall today, July 1, in southeastern China, south of Hong Kong.

When NASA’s Tropical Rainfall Measuring Mission or TRMM satellite flew over Rumbia on July 1 at 0412 UTC (12:12 a.m. EDT) the Precipitation Radar instrument noticed some areas of heavy rainfall in bands of thunderstorms south of the center of circulation. Heavy rainfall was falling at rates of over 2 inches/50 mm per hour. TRMM imagery continued to show the strong band of thunderstorms continued wrapping around the southern quadrant of the storm and into the low-level center.

On July 1 at 1500 UTC (11 a.m. EDT), Rumbia’s maximum sustained winds increased from 45 knots (52 mph) to 65 knots (74 mph/120 kph) making it a minimal typhoon. It was located near 20.3 north latitude and 110.9 east longitude, about 217 nautical miles southwest of Hong Kong. Rumbia is moving to the west-northwest at 13 knots (15 mph/24 kph).

Rumbia’s western quadrant is already interacting with the land of Hainan Island, China, breaking up the band of thunderstorms in that part of the storm. Because the interaction with land is already weakening the storm the forecasters at the Joint Typhoon Warning Center (JTWC) expect Rumbia to continue to weaken as it heads for landfall.

JTWC expects that Rumbia may make landfall near Zhanjiang, a prefecture-level city at the southwestern end of Guangdong province. Areas that Rumbia’s center are expected to pass near include Leizhou Bay and Zhanjiang Port.

Residents along southeastern China are already feeling the effects of Rumbia with tropical-storm force winds, heavy rainfall, flash flooding and very rough surf along the coasts.

Rob Gutro
NASA’s Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/rumbia-northwestern-pacific/#.UdGzjZxdCow

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Controlling organ growth with light

19.11.2018 | Life Sciences

New way to look at cell membranes could change the way we study disease

19.11.2018 | Life Sciences

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>