Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees Cyclone Chapala approaching landfall in Yemen

03.11.2015

NASA's Aqua satellite and the GPM satellite passed over Cyclone Chapala as it was approaching landfall in central Yemen on November 2. The Global Precipitation Measurement Mission or GPM core satellite analyzed the heavy rain falling in the major hurricane.


On Nov. 2, 2015 at 09:40 UTC (4:40 p.m. EDT) the MODIS instrument aboard NASA's Aqua satellite captured this image of Tropical Cyclone Chapala making landfall in Yemen.

Credits: NASA Goddard MODIS Rapid Response Team

On Nov. 2, 2015 at 09:40 UTC (4:40 p.m. EDT) the Moderate Resolution Imaging Spectroradiometer or MODIS instrument aboard NASA's Aqua satellite captured an image of Tropical Cyclone Chapala as the eye of the storm was approaching the Yemen coast. Chapala maintained an eye, although it appeared cloud-covered. Animated multispectral satellite imagery shows the system has maintained a 15-nautical-mile-wide eye and structure. The image was created by the MODIS Rapid Response Team at NASA's Goddard Space Flight Center, Greenbelt, Maryland.

Chapala weakened from category four intensity a couple days ago while maintaining a course that steers it toward Yemen.

On Nov. 2 at 0311 UTC (Nov. 1 at 10:11 p.m. EST) the GPM core satellite saw the heaviest rainfall on the western and southern quadrants of the storm, falling at more than 50 mm (1.90 inches) per hour. The most intense rainfall was occurring just southwest of the eye, where rain was falling up to 65 mm (2.5 inches) per hour. GPM is a satellite that is jointly managed by NASA and the Japan Aerospace Exploration Agency.

A couple of days before, the GPM core observatory satellite had another good look at tropical cyclone Chapala. On October 31, 2015 at 0331 UTC (Oct. 30 at 11:31 p.m. EDT) Chapala was a very powerful tropical cyclone with maximum sustained winds of about 117 knots (135 mph). GPM's Microwave Imager (GMI) instrument measured rain dropping at a rate of over 88 mm (3.5 inches) per hour northwest of Chapala's eye.

GPM's Dual-Frequency Precipitation Radar (DPR) swath of coverage passed to the east of Chapala's eye. Feeder bands on that side of the tropical cyclone were found by DPR to be dropping rain at a rate of about 44 mm (1.7 inches) per hour. A 3-D view was created at NASA Goddard looking toward the east. It was derived from GPM's Ka and Ku band radar data. It shows that storm tops on Chapala's eastern side were reaching heights of over 13.4 km (8.3 miles).

At 1500 UTC (10 a.m. EST), Tropical Cyclone Chapala's maximum sustained winds were still near 105 knots (120.4 mph/194.5 kph). That makes Chapala a major hurricane, Category three on the Saffir-Simpson Wind Scale. Chapala was centered near 13.5 degrees north latitude and 50.3 degrees east longitude, about 110 nautical miles east-southeast of Mukalla, Yemen. Chapala has moved to the west at 10 knots (11.5 mph/18.5 kph).

The Joint Typhoon Warning Center (JTWC) expects landfall to occur early on November 3, southwest of Mukalla. JTWC forecasters noted that dry air that is emanating from the Arabian Peninsula will continue to weaken the storm in addition to increasing vertical wind shear. The cyclone is expected to decay rapidly after landfall and dissipate by November 4.

Rob Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>