Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees compact Tropical Storm Damrey approaching southern Japan

31.07.2012
Tropical Storm Damrey appears to be a compact tropical storm on NASA satellite imagery as it heads west. It is expected to pass north of Iwo To, Japan and later south of Kyushu, one of Japan's large islands.

NASA's Aqua satellite passed over Tropical Storm Damrey on July 30 at 03:21 UTC (July 29 at 11:21 p.m. EDT) and the Atmospheric Infrared Sounder (AIRS) instrument captured an infrared image of the storm. It showed that strong, high, cold cloud tops of thunderstorms were in a tight circle around the center of circulation.


NASA's Aqua satellite passed over Tropical Storm Damrey on July 29 at 11:21 p.m. EDT and the AIRS instrument captured an infrared image of the storm. It showed that strong, high, cold cloud tops of thunderstorms (purple) were in a tight circle around the center of circulation.
Credit: Credit: NASA JPL, Ed Olsen

There were bands of thunderstorms mostly north and east of the center of circulation. Some of the thunderstorm cloud tops were so high that they were as cold as -63 Fahrenheit/-52 Celsius. The circle of thunderstorms appears compact in the infrared imagery.

Damrey formed as a depression on July 28. By July 30, Damrey reached tropical storm status. Damrey's maximum sustained winds were near 45 knots (51.7 mph/83.3 kmh) at 11 a.m. EDT (1500 UTC) on July 30. Tropical-storm-force winds extend out 50 nautical miles (57.5 miles/92.6 km) from the center, making the storm just over 100 miles (115 miles/185 km) in diameter. Damrey was located about 175 nautical miles (201.4 miles/324 km) east-northwest of Iwo To, near 26.3 North and 143.6 East. It is moving to the west-northwest at 5 knots (5.7 mph/9.2 kmh).

Forecasters at the Joint Typhoon Warning Center expect Damrey to track to the west-northwest over the next three days. It is currently expected to strengthen and then weaken before it makes landfall north of Shanghai, China on August 3.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

Further reports about: Iwo NASA UTC cloud tops nautical miles tropical diseases

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>