Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees compact Tropical Storm Damrey approaching southern Japan

31.07.2012
Tropical Storm Damrey appears to be a compact tropical storm on NASA satellite imagery as it heads west. It is expected to pass north of Iwo To, Japan and later south of Kyushu, one of Japan's large islands.

NASA's Aqua satellite passed over Tropical Storm Damrey on July 30 at 03:21 UTC (July 29 at 11:21 p.m. EDT) and the Atmospheric Infrared Sounder (AIRS) instrument captured an infrared image of the storm. It showed that strong, high, cold cloud tops of thunderstorms were in a tight circle around the center of circulation.


NASA's Aqua satellite passed over Tropical Storm Damrey on July 29 at 11:21 p.m. EDT and the AIRS instrument captured an infrared image of the storm. It showed that strong, high, cold cloud tops of thunderstorms (purple) were in a tight circle around the center of circulation.
Credit: Credit: NASA JPL, Ed Olsen

There were bands of thunderstorms mostly north and east of the center of circulation. Some of the thunderstorm cloud tops were so high that they were as cold as -63 Fahrenheit/-52 Celsius. The circle of thunderstorms appears compact in the infrared imagery.

Damrey formed as a depression on July 28. By July 30, Damrey reached tropical storm status. Damrey's maximum sustained winds were near 45 knots (51.7 mph/83.3 kmh) at 11 a.m. EDT (1500 UTC) on July 30. Tropical-storm-force winds extend out 50 nautical miles (57.5 miles/92.6 km) from the center, making the storm just over 100 miles (115 miles/185 km) in diameter. Damrey was located about 175 nautical miles (201.4 miles/324 km) east-northwest of Iwo To, near 26.3 North and 143.6 East. It is moving to the west-northwest at 5 knots (5.7 mph/9.2 kmh).

Forecasters at the Joint Typhoon Warning Center expect Damrey to track to the west-northwest over the next three days. It is currently expected to strengthen and then weaken before it makes landfall north of Shanghai, China on August 3.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

Further reports about: Iwo NASA UTC cloud tops nautical miles tropical diseases

More articles from Earth Sciences:

nachricht Mineral discoveries in the Galapagos Islands pose a puzzle as to their formation and origin
19.10.2018 | Johannes Gutenberg-Universität Mainz

nachricht Massive organism is crashing on our watch
18.10.2018 | S.J. & Jessie E. Quinney College of Natural Resources, Utah State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>