Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees Alenga become a cyclone in the Southern Indian Ocean

09.12.2011
NASA's Aqua satellite passed over Cyclone Alenga and captured a visible image of the rounded and more powerful storm is it makes its way toward Western Australia.

Alenga had grown from a tropical storm to a cyclone by 0300 UTC on Dec. 8 (10 p.m. EST, Dec. 7) when its maximum sustained winds reached 90 knots (103 mph/166 kmh).


On Dec. 8 at 7:10 UTC (2:10 a.m. EST), the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA's Aqua satellite captured a visible image of Cyclone Alenga when it passed overhead from space. Alenga appeared as a rounded area of compact clouds. Credit: NASA Goddard MODIS Rapid Response Team

On Dec. 8 at 7:10 UTC (2:10 a.m. EST), the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA's Aqua satellite captured a visible image of Cyclone Alenga when it passed overhead from space. Alenga appeared as a rounded area of compact clouds. Although an eye was not apparent on visible imagery, it was seen in earlier infrared imagery. At that time, Alenga's winds had decreased as a result of wind shear.

By 1500 UTC (10 a.m. EST) on Dec. 8, Alenga's maximum sustained winds were down to 80 knots (92 mph/148 kmh). Cyclone-force winds extended 25 miles (40 km) out from the center of the storm, while tropical storm-force winds extended out to 110 miles (177 km), making the storm at least 220 miles (354 km) in diameter. Alenga was about 400 nautical miles (460 miles/740 km) south-southeast of the Cocos Islands, near 18.9 South latitude and 99.6 East longitude. It was speeding to the east-southeast near 22 knots (25 mph/40 kmh). Infrared imagery at 1500 UTC no longer showed an eye, further indication that the storm was weakening.

In addition to facing higher wind shear, a field of cold air stratocumulus clouds to the west is moving into the low level circulation of the center, and cold air also weakens tropical cyclones. Alenga is also being stretched out from the wind shear, and the strongest convection (rising air that forms the thunderstorms that make up the tropical cyclone) is now starting to stretch to the southeast of the storm's center. Alenga now faces even a third challenge: dry air. Dry air is also starting to affect the western side of the storm by absorbing moisture and eroding the band of thunderstorms.

The Joint Typhoon Warning Center expects Alenga to begin transitioning to an extra-tropical storm later today. As it begins that transition, however, the cold and dry air and the increased wind shear will work in tandem with the cooler sea surface temperatures that lay ahead in Alenga's path to cause the storm to weaken quickly.

images: http://www.nasa.gov/mission_pages/hurricanes/archives/2011/h2011_Alenga.html

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Hundreds of bubble streams link biology, seismology off Washington's coast
22.03.2019 | University of Washington

nachricht Atmospheric scientists reveal the effect of sea-ice loss on Arctic warming
11.03.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>