Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees 10-mile-high thunderstorms in Hurricane Henriette

08.08.2013
NASA's TRMM satellite peered into the clouds of Hurricane Henriette as is continues moving through the Eastern Pacific Ocean, and found powerful thunderstorms that topped 10 miles high.

The higher the thunderstorms are, the more powerful the uplift in the air, and more powerful the thunderstorms. Thunderstorms that reach 10 miles high, like some of the ones seen in Hurricane Henriette tend to drop heavy rainfall, and NASA's Tropical Rainfall Measuring Mission or TRMM satellite confirmed that.


TRMM is able to measure rainfall occurring in a storm from space. Rainfall is derived from TRMM's Microwave Imager and Precipitation Radar instruments. TRMM's PR instrument measured rain falling at the rate of over 55.46 mm (~2.2 inches) per hour a towering thunderstorm near Henriette's center.

Credit: SSAI/NASA, Hal Pierce

The TRMM satellite flew over the eastern Pacific Ocean on August 6, 2013 at 0233 UTC (~5:33 p.m. Hawaii local time) collecting data for low sun angle views of Hurricane Henriette. A visible/infrared image created by TRMM data showed shadows cast by towering thunderstorms on the northeastern side of Henriette's eye wall.

TRMM is able to measure rainfall occurring in a storm from its orbit in space. Rainfall is derived from TRMM's Microwave Imager and Precipitation Radar instruments. TRMM's PR instrument measured rain falling at the rate of over 55.46 mm (~2.2 inches) per hour a towering thunderstorm near Henriette's center.

At NASA's Goddard Space Flight Center in Greenbelt, Md. the TRMM team used the satellite's data to create 3-D images and animations. One 3-D image looking toward the east from TRMM PR data revealed that towering storms in the northeastern side of Henriette's eye were reaching heights of almost 16.75km (~10.41 miles). This kind of chimney cloud, also called a "hot tower" (as it releases a huge quantity of latent heat by condensation) can play a part in the formation or intensification of tropical cyclones. Intense rainfall in Henriette's eye wall was returning values greater than 48.7dBZ to the TRMM satellite.

At 11 a.m. EDT on Aug. 7, Hurricane Henriette's maximum sustained winds were near 85 mph/140 kph, and little change in strength is expected today, while weakening is expected to begin tomorrow, Aug. 8. The center of Hurricane Henriette was located near latitude 16.2 north and longitude 134.9 west, about 1,350 miles/2,170 km east of Hilo, Hawaii. Henriette is moving toward the west-northwest near 10 mph/17 kph and is expected to continue in that direction before turning west tomorrow, Aug. 8.

This 3-D image (looking toward the east) from TRMM PR data reveals that towering storms in the northeastern side of Henriette's eye were reaching height of almost 16.75km (~10.41 miles).

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>