Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellites showed little change in Tropical Storm Leslie

05.09.2012
Over the weekend of Aug. 31 to Sept. 2, Tropical Storm Leslie's maximum sustained winds were pretty constant and satellite imagery from NASA's Aqua and Terra satellites confirm the steadiness of the storm. That story is expected to change later this week however, as Leslie nears Bermuda and is expected to reach hurricane strength. Meanwhile, Leslie is still about the same strength today, Sept. 4 because of wind shear.

Two visible images from the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies onboard both of NASA's Aqua and Terra satellites showed that Tropical Storm Leslie didn't change much in terms of form or strength from Aug. 31 at 12:55 p.m. EDT to Sept. 1 10:30 a.m. EDT. Leslie's shape appeared almost identical in a 22 hour period at a time that its maximum sustained winds were near 60 mph (95 kmh).


These visible images from the MODIS instrument onboard NASA's Aqua and Terra satellites showed that Tropical Storm Leslie didn't change much in terms of form or strength from Aug. 31 at 12:55 p.m. EDT to Sept. 1 10:30 a.m. EDT.

Credit: NASA Goddard MODIS Rapid Response Team

On Sept. 4 at 11 a.m. EDT, Tropical Storm Leslie's maximum sustained winds had still not changed much from the time NASA's two satellites passed over it on the weekend. Maximum sustained winds were now up to 65 mph (100 kmh). Leslie is about 410 miles (670 km) in diameter, as tropical-storm force winds extend up to 205 miles (335 km) from the center.

The National Hurricane Center noted that Leslie's path may become somewhat erratic over the next couple od days on its northward journey.

Leslie was located about 525 miles (840 km) south-southeast of Bermuda, near latitude 25.0 north and longitude 62.5 west. Leslie is moving toward the north near 3 mph (6 kmh) and is expected to continue moving slowly in that direction.

Ocean swells from Tropical Storm Leslie may affect the Leeward Islands, Puerto Rico and the Virgin Islands, and those conditions are expected to spread to Bermuda and the eastern U.S.

Satellite data on Sept. 4 showed that the rising air that forms the thunderstorms that make up the storm (convection) has decreased near Leslie's center. Leslie is being battered by wind shear from the northwest at 20 knots, which is pushing the showers and thunderstorms to the southeast. The National Hurricane Center update at 11 a.m. EDT noted that "the convective cloud structure now more resembles a curved band pattern [than a circular tropical cyclone]." In fact, the low-level center of Leslie appears to be 30 miles north of the mid-level center. That's important because the centers of tropical cyclones need to be stacked on top of each other like a coiled spring, in order to rotate and intensify. Basically, it means that Leslie is struggling.

That environment is expected to change, though, as Leslie moves north and wind shear relaxes, giving the storm a chance to organize. That's why the National Hurricane Center expects Leslie to strengthen into a hurricane by the end of the week.

For the Aug. 31 image in high resolution: http://lance-modis.eosdis.nasa.gov/cgi-bin/imagery/single.cgi?image=Leslie.A2012244.1655.2km.jpg

For the Sept. 1 image in high resolution: http://lance-modis.eosdis.nasa.gov/cgi-bin/imagery/single.cgi?image=Leslie.A2012245.1430.2km.jpg

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>