Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Satellites Examine a Powerful Summer Storm

06.07.2012
As a powerful summertime storm, known as a derecho, moved from Illinois to the Mid-Atlantic states on June 29, expanding and bringing destruction with it, NASA and other satellites provided a look at various factors involved in the event, its progression and its aftermath.
According to NOAA's Storm Prediction Center web site, a derecho (pronounced "deh-REY-cho") is a widespread, long-lived wind storm that is associated with a band of rapidly moving showers or thunderstorms. Damage from a derecho is usually in one direction along a relatively straight track. By definition an event is classified a derecho if the wind damage swath extends more than 240 miles (about 400 kilometers) and includes wind gusts of at least 58 mph (93 km/h) or greater along most of its length.

These storms are most common in the United States during the late spring and summer, with more than three quarters occurring between April and August. They either extend from the upper Mississippi Valley southeast into the Ohio Valley, or from the southern Plains northeast into the mid-Mississippi Valley.

NOAA's GOES-13 satellite, which watches the movement of weather systems in the eastern half of the U.S., captured the expansion and movement of the derecho from its birthplace in Illinois. The satellite data was compiled and animated by the NASA GOES Project at the NASA Goddard Space Flight Center in Greenbelt, Md.

The movie begins on June 28 at 1515 UTC (11:15 a.m. EDT) and ends on June 30, 2012 at 1601 UTC (12:01 p.m. EDT). In the animation, the derecho's clouds appear as a line in the upper Midwest on June 29 at 1432. By 1602 UTC, they appear as a rounded area south of Lake Michigan. By 2132, the area of the derecho's clouds were near Lake Erie and over Ohio expanding as the system track southeast. By 0630 UTC, the size appears to have almost doubled as the derecho moves over West Virginia, Maryland, Pennsylvania and Virginia. At 0232 UTC on June 30 (10:32 p.m. EDT), the Derecho was over the mid-Atlantic bringing a 100 mile line of severe storms and wind gusts as high as 90 mph to the region.

"It is interesting how the process is a self-sustaining process that is fed by a combination of atmospheric factors that all have to be in place at the same time," said Joe Witte, a meteorologist in Climate Change Communication at George Mason University, Va. and a consultant to NASA Headquarters, Washington. "That is why they are relatively rare: not all the elements line up that often."

Witte said that one could think of the strong winds as a combination to two main wind flows: the downburst winds from very high altitudes, and the forward speed of the storms.

A downburst occurs when cold air in the upper atmosphere is cooled more by the evaporation of some of the rain and melting of the frozen precipitation pushed up into the high levels of the towering cumulonimbus (thunderclouds). That cold air becomes much denser than the surrounding air and literally falls to the ground, accelerating like any other falling body. "The huge blob of very cold air from the upper atmosphere has a higher forward wind speed since it is high in the atmosphere, " Witte said. "This gives the 'blob' great forward momentum. Add that speed to the falling speed and the result is a very powerful forward moving surface wind."

The process of a derecho can become self-sustaining as hot and humid air is forced upward by the gust front and develops more (reinforcing) towering clouds. When one adds in a rear low level jet stream, there is nothing to stop the repeating process.

NASA's Aqua satellite flew over the derecho on June 29 and June 30, using the Atmospheric Infrared Sounder instrument (AIRS) onboard to capture infrared imagery of the event.

The AIRS images for June 29, shows the crescent shape of the initial stage of the derecho as it gathered strength on the Michigan-Indiana-Ohio border and began its rapid eastward movement. "The AIRS infrared image shows the high near-surface atmospheric temperatures blanketing the South and Midwestern U.S., approaching 98 degrees Fahrenheit," said Ed Olsen of the AIRS Team at NASA's Jet Propulsion Laboratory.

The AIRS images for June 30 show areas of intense convection centered off the New Jersey coast and another, less intense, system over Iowa-Indiana-Ohio. The area off the New Jersey coast is no longer a rapidly moving linear front. The near-surface atmospheric temperatures over the South and Midwest had decreased by 10 to 15 Fahrenheit in most areas," Olsen said.

Another NASA satellite captured the before and after effects of the derecho's impact on the power grid from Philadelphia, Pa., to Richmond, Va.

NASA’s Suomi National Polar-orbiting Partnership satellite (NPP) captured night-time images on June 28 and June 30, that reflected the massive blackouts that occurred after the derecho swept through the mid-Atlantic states.

Extensive power outages in Washington, D.C., and Baltimore were visible in NPP's night-time images on June 30, although clouds obscured lights from Philadelphia and other areas north and east of Baltimore. Of particular interest is the loss of light to the north and west of Washington along the Interstate 270 and Interstate 66 highways and Maryland Route 267.

The images were taken with the day/night band of Suomi NPP’s Visible Infrared Imaging Radiometer Suite (VIIRS).

Although this event seemed more like a 100-year storm, there was a powerful derecho event over the same states on July 4 and 5, 1980. The National Oceanic and Atmospheric Administration (NOAA) called the event "The More Trees Down Derecho." States affected by that even included Iowa, northeastern Missouri, Illinois, Indiana, Ohio, West Virginia, western Pennsylvania, northern and eastern Virginia, and Maryland. That derecho had wind gusts in excess of 80 mph at several points along the storm's path, and it took 73 lives.

For more information about derechos and graphics showing how they work, visit NOAA's Storm Prediction Center website:

http://www.spc.noaa.gov/misc/AbtDerechos/derechofacts.htm

Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/derecho.html

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>