Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA uses satellite to unearth innovation in crop forecasting

28.05.2009
Soil moisture is essential for seeds to germinate and for crops to grow. But record droughts and scorching temperatures in certain parts of the globe in recent years have caused soil to dry up, crippling crop production. The falling food supply in some regions has forced prices upward, pushing staple foods out of reach for millions of poor people.

NASA researchers are using satellite data to deliver a kind of space-based humanitarian assistance. They are cultivating the most accurate estimates of soil moisture – the main determinant of crop yield changes – and improving global forecasts of how well food will grow at a time when the world is confronting shortages.

During a presentation this week at the the Joint Assembly of the American Geophysical Union in Toronto, NASA scientist John Bolten described a new modeling product that uses data from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) sensor on NASA's Aqua satellite to improve the accuracy of West African soil moisture. The group produced assessments of current soil moisture conditions, or "nowcasts," and improved estimates by 5 percent over previous methods. Though seemingly small and incremental, the increase can make a big difference in the precision of crop forecasts, Bolten said.

The modeling innovation comes at a time when crop analysts at agencies like the U.S. Department of Agriculture (USDA) are working to meet the food shortage problem head on. They combine soil moisture estimates with weather trends to produce up-to-date forecasts of crop harvests. Those estimates help regional and national officials prepare for and prevent food crises.

"The USDA's estimates of global crop yields are an objective, timely benchmark of food availability and help drive international commodity markets," said Bolten, a physical scientist at NASA's Goddard Space Flight Center, Greenbelt, Md. "But crop estimates are only as good as the observations available to drive the models."

Crop analysts must estimate root-zone soil moisture, the amount of water beneath the surface available for plants to absorb. But estimating the amount of water in soil has posed challenges. Ground-level sensors for rainfall and temperature -- the two key elements for estimating soil moisture – are often sparsely located in the developing nations that need them the most. Hard-to-reach terrain like mountains or desert, lack of local cooperation as well as high maintenance costs, can lead to sensors more than 500 miles apart.

Under a new NASA-USDA collaboration known as the Global Agriculture Monitoring Project, Bolten and colleagues from the USDA's Agricultural Research Service are using AMSR-E to fill the data gaps with daily soil moisture "snapshots." Since its launch in 2002, the instrument has "seen" through clouds, and light vegetation like crops and grasses to detect the amount of soil moisture beneath Earth's surface.

AMSR-E uses varying frequencies to detect the amount of emitted electromagnetic radiation from the Earth's surface. Within the microwave spectrum, this radiation is closely related to the amount of water that is in the soil, allowing researchers to remotely sense the amount of water in the soil across any geographic landscape.

Following a test of their system over the United States, Bolten's team tracked West African rainfall, temperature, and model assessments of soil moisture with and without the AMSR-E satellite sensor observations. They used West Africa as a model because the landscape provides varying cover, from desert and semi-arid landscape in the north to grasslands, lush forests, and crop land to the south. Rainfall in the region is highly variable yet sparsely monitored by ground-based sensors. They also targeted West Africa to demonstrate the possibility for improving the assessment of drought-caused food shortages on the region's dense population.

"Many developing countries are relying on limited and highly variable water resources," said Bolten. "And typically those same regions don't have adequate ground station data or crop-estimating agencies capable of making reliable production forecasts."

By definition, the severity of agricultural drought is determined by root-zone soil water content. So Bolten's satellite-driven boost to root-zone soil moisture prediction also directly improves drought monitoring. And Bolten says results from AMSR-E are just a precursor to dramatic new improvements in data and prediction accuracy researchers expect from the Soil Moisture Active and Passive satellite, slated to launch in 2013.

Food reserves are at their lowest level in 30 years, according to the United Nations World Food Program, putting the world's 1 billion poorest people most at risk. Prices for wheat, rice, and corn have more than doubled in the last 24 months, hitting countries like Haiti, Bangladesh, and Burkina Faso the hardest. And the U.S. is not unaffected -- drought in 2008 led to an estimated $1.1 billion in crop losses in Texas alone.

"This advance is making it possible for us to do our job in a more precise way," said Curt Reynolds, a crop analyst for the USDA's Foreign Agricultural Service in Washington. "We plan to make NASA's soil moisture information available to commodity markets, traders, agricultural producers, and policymakers through our Crop Explorer Web site."

Written by:
Gretchen Cook-Anderson
NASA Earth Science News Team

Sarah DeWitt | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/crop_forecast.html

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>