Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's HS3 Looks Hurricane Edouard in the Eye

01.10.2014

NASA and NOAA scientists participating in NASA’s Hurricane and Severe Storms Sentinel (HS3) mission used their expert skills, combined with a bit of serendipity on Sept. 17, 2014, to guide the remotely piloted Global Hawk over the eye of Hurricane Edouard and release a sonde that rotated within the eye as it descended and fell into  the eyewall of the storm at low levels.

NASA’s HS3 mission has returned to NASA’s Wallops Flight Facility on the Eastern Shore of Virginia for the third year to investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin. 


This video shows two passes over Hurricane Edouard during the sixth science flight of NASA’s Global Hawk No. 872 using two of the onboard cameras. One pass is during the day, the second right after “moonrise.”

Image Credit: NASA's Armstrong Flight Research Center, David Fratello


This graph of data from a dropsonde on Sept. 17 shows very strong, hurricane-force winds at the surface of Hurricane Edouard.

Image Credit: NASA

NOAA’s Advanced Vertical Atmospheric Profiling System (AVAPS) aboard Global Hawk No. 872 released 88 dropsondes into the hurricane that measured temperature, humidity and winds throughout the depth of the troposphere, the region of the atmosphere where humans and aircraft experience weather.

During the Global Hawk’s seventh science flight on Sept. 17, “the remotely piloted aircraft released a dropsonde from 62,000 feet along the inner edge of the eyewall on a south to north pass,” said Michael L. Black, research meteorologist at the Hurricane Research Division, NOAA’s Office of Oceanic and Atmospheric Research - Atlantic Oceanographic and Meteorological Laboratory in Florida. 

Black said, “The sonde started out on the south side of the eye and rotated around to the eastern eyewall. The sonde reported a sea-level pressure of 963 millibars, surface winds of 90 knots [103.6 mph, or 166.7 kph], and average low-level winds of 95 knots.” 

The data showed that Eduoard was indeed still at least a strong Category 2 hurricane, possibly Category 3, as the strong winds continued to be observed near the ocean surface.

Basically, the dropsonde, along with 87 others during this flight, provided readings from top to bottom of the critical region of the atmosphere, giving scientists a perfect view of winds, temperature and pressure throughout the whole depth of the storm.

On Sept. 18, Global Hawk No. 872 took off at 7:15 a.m. EDT to return to investigate Eduoard as it moved over cooler Atlantic waters and was expected to weaken. This mission was the eighth science flight during the current campaign for the Global Hawk. During the flight, the Global Hawk ejected 50 dropsondes and observed the decay of Hurricane Edouard to tropical storm strength and recorded the beginning of the demise of the storm that included the decoupling from the mid- and low-level centers of the storm.  

Overall, the Global Hawk flights into Edouard documented its formation into a tropical storm, its rapid increase in intensity into a major, Category 3 storm, and its decay back to a tropical depression thereby capturing the life cycle of a classic hurricane with roots from a tropical wave from Africa.

The HS3 mission is funded by NASA Headquarters and overseen by NASA’s Earth System Science Pathfinder Program at NASA’s Langley Research Center in Hampton, Virginia. It is one of five large airborne campaigns operating under the Earth Venture program.

The HS3 mission also involves collaborations with partners including the National Centers for Environmental Prediction, Naval Postgraduate SchoolNaval Research LaboratoryNOAA’s Unmanned Aircraft System Program, Hurricane Research Division and Earth System Research LaboratoryNorthrop Grumman Space TechnologyNational Center for Atmospheric ResearchState University of New York at AlbanyUniversity of Maryland - Baltimore CountyUniversity of Wisconsin, and University of Utah. The HS3 mission is managed by the Earth Science Project Office at NASA Ames Research Center in Moffett Field, California. The aircraft are maintained and based at NASA’s Armstrong Flight Research Center in Edwards, California.

For more information about NASA’s HS3 mission, visit:  http://www.nasa.gov/hs3

Rob Gutro | Eurek Alert!

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>