Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's airborne mission to explore the global atmosphere

08.07.2016

Ice sheets, deserts, rivers, islands, coasts and oceans -- the features of Earth's surface are wildly different, spread across a vast geography. The same is true for Earth's thin film of atmosphere and the mix of gases it holds, although the details are invisible to human eyes. Pollutants emitted to the atmosphere -- soot, hydrocarbons, nitrogen oxides -- are dispersed over the whole globe, but remote regions are cleaner, by factors of 1000 or more, than areas near the continents. A new NASA airborne campaign aims to map the contours of the atmosphere as carefully as explorers once traced the land and oceans below.

The Atmospheric Tomography, or ATom, mission is the first to survey the atmosphere over the oceans. Scientists aboard NASA's DC-8 flying laboratory will journey from the North Pole south over the Pacific Ocean to New Zealand and then across to the tip of South America and north up the Atlantic Ocean to Greenland. ATom will discover how much pollution survives to the most remote corners of the earth and assess how the environment has changed as a result.


Probes on the outside of NASA's DC-8 aircraft to collect atmospheric samples. The DC-8 aircraft will be outfitted with 20 instruments for the ATom mission.

Credit: NASA

"We've had many airborne measurements of the atmosphere over land, where most pollutants are emitted, but land is only a small fraction of the planet," said Michael Prather, an atmospheric scientist and ATom's deputy project scientist at University of California Irvine.

"The oceans are where a lot of chemical reactions take place, and some of the least well understood parts are hard to get to because they are so remote. With ATom we're going to measure a wide range of chemically distinct parts of the atmosphere over the most remote areas of the ocean that have not been measured before."

While the majority of the flight path takes the DC-8 over the ocean, the science team expects to see influence from human pollution that originates on land.

"Humans produce a lot of pollution, and it doesn't just disappear when it's blown off the continents. It goes somewhere," said atmospheric scientist Steve Wofsy, ATom principal investigator at Harvard University. "We know it gets diluted in the atmosphere, it gets washed out by rain, but we want to understand the processes that do that and where and how long they take."

The suite of 20 instruments aboard the DC-8 will measure airborne particles called aerosols and more than 200 gases in each sampled air patch, documenting their locations and allowing scientists to determine interactions. The science team will use ATom's collected data on the air's chemical signatures to understand where pollutants originate, and where and how quickly these climate gases react chemically and eventually disappear from the atmosphere.

ATom is particularly interested in methane, ozone and airborne particles called black carbon, which have strong effects on climate and which all have both human and natural origins. Methane and tropospheric ozone, are two greenhouse gases that linger in the atmosphere for weeks to decades--much less time than the century that carbon dioxide remains in the air. Nevertheless, the short-term effects of methane and ozone pollution today are expected to contribute almost as much as carbon dioxide to changing the climate in the coming decades.

ATom's first flight is planned for July 28, a there-and-back trip over the tropics between Palmdale, California and the equator. On July 31, the mission begins its around-the-world trip lasting 26 days. It's the first of four deployments that will take place over the next three years in different seasons.

The data collected will be used to improve atmospheric computer models used to predict future climate conditions into the 21st century as well as to provide checks and calibration in otherwise unreachable areas for several major satellite systems, including NASA's Orbiting Carbon Observatory-2 (OCO-2) and Measurements of Pollution in the Troposphere (MOPITT) and the European Space Agency's TROPOspheric Monitoring Instrument (TROPOMI).

The ATom mission is funded by NASA Headquarters and overseen by the agency's Earth System Science Pathfinder Program at NASA's Langley Research Center in Hampton, Virginia. It is one of six large airborne campaigns operating under the Earth Venture Suborbital program. ATom is led by Harvard University and managed by the Earth Science Project Office at NASA Ames Research Center at Moffett Field, California. The DC-8 aircraft is maintained and based at NASA Armstrong Flight Research Center.

###

Related Stories:

NASA Airborne Study Surveys Greenhouse Gases in World Tour

NASA's ATom Mission is Flying Around the World in 26 Days

Ellen Gray NASA's Earth Science News Team

Ellen Gray | EurekAlert!

More articles from Earth Sciences:

nachricht Atmospheric scientists reveal the effect of sea-ice loss on Arctic warming
11.03.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Sensing shakes
11.03.2019 | University of Tokyo

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>